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Introduction

This reportdetailswork performedin theCeramicEngineeringDepartmentof Clemson
Universityover theperiodfrom May 1, 1996to July30, 1997underGrantNo. NAG-l-1301.
Thework describedin thisreportcoversthefinal yearof a several-yearprograminvolving
superconductorsandferroelectricsin spaceapplications.Recentemphasishasbeen on the

investigation of the stress-enhanced Rainbow and Cerambow benders as high displacement

actuators. This report is presented in nine parts dealing with processing, characterization and

externally published work.

The Rainbow actuator technology is a relatively new materials development which had its

beginning in 1992. It involves a new processing technique for preparing pre-stressed, high lead

containing piezoelectric and electrostrictive ceramic materials. Ceramics fabricated by this method

produce bending-mode actuator devices which possess several times more displacement and load

bearing capacity that present-day benders; i.e., unimorphs and bimorphs. Since they can also be

used in sensor applications, Rainbows are part of the family of materials known as smart ceramics.

During this period, PLZT Rainbow ceramics were characterized with respect to (1) the formation of

their distinctive curvature as it relates to their high temperature creep properties, (2) the grain size

dependence of their nonlinear properties, (3) nonlinear piezoelectric behavior, (4) electrostrictive

butterfly loops and (5) vibration control and noise suppression applications and (6) operational

fatigue.

The Cerambow development essentially comprises a pre-stressed structural composite for

actuators and sensors consisting of a ferroelectric, piezoelectric, antiferroelectric or

electrostrictive material and a metal or plastic substrate suitably bonded to one of the major

surfaces such that the thermal expansion/contraction mismatch between the ceramic and

substrate produces an internal stress which acts to amplify electromechanical displacement and

to increase its load-bearing capability. Termed a Cerambow (CERAMic Biased Oxide Wafer),

this composite actuator structure is fabricated by bonding together a ceramic wafer and a

substrate at an elevated temperature of approximately 250 to 300°(2 and allowed to cool to room

temperature. The resulting internal stresses produced from the thermal contraction mismatch

and any domain reorientation effects act to deform the originally planar wafer into a dome or

curved structure which is similar in characteristics and operation to a Rainbow device. Like a

Rainbow, this pre-stressed composite has amplified displacement and greater than normal load

bearing capability. Results on the characterization of Cerambows and their comparison to

Rainbows as actuators are included in this report. In general, the Cerambow has proven to be a

viable strain-amplification device for piezoelectric applications, producing displacements of

approximately 75% of Rainbow elements of similar dimensions.

Results from the study on fatigue in Rainbow and Cerambow actuators show that these high

displacement actuators have definite fatigue rates and lifetimes depending upon (1) the amount of

displacement generated, (2) how hard they are driven electrically and (3) the microstructure (grain

size) of the ceramic material. Lifetimes for some actuators were on the order of 107 cycles at near

dc (1 Hz) frequencies while others still retained up to 74% of their displacement at 2.1 x 107 Hz.
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Investigation of Curvature Formation in Rainbow Ceramics

1. Introduction

Recent studies of the Rainbow ceramic have demonstrated that this new device possesses

great potential for stress sensing and actuation applications [1-4]. Many of the peculiar features

and properties of Rainbow ceramics have been found to be closely related to the unique

technique of the Rainbow process which involves local chemical reduction of a

high-lead-containing piezoelectric or electrostrictive ceramic wafer at an elevated temperature.

Such a process leads to a dome-shaped structure when the Rainbow is cooled to room

temperature. A large physical displacement can be produced in the axial direction of a Rainbow

when a voltage is applied across its unreduced layer. Because of the dome shape and the

accompanying internal stress, Rainbows are capable of sustaining a load or pressure much larger

than normal. Furthermore, when made from a piezoelectric composition, these devices can also

be utilized for detection and measurement of external stresses or forces. Stress-sensing

sensitivities of over two orders of magnitude greater than the unreduced ceramic of the same

composition have been obtained from the Rainbows operated in the dome mode [5].

Generally, the occurrence of the dome curvature for a Rainbow can be regarded as a

consequence of the dimensional mismatch between the unreduced and reduced layers created

during the chemical reduction process, although detailed mechanisms are much more complex.

Three major contributors to the curvature onset have been proposed in the previous

investigations. They are: (1) volume change in the reduced region imposed by the reduction

process, (2) difference in thermal expansion coefficients of the unreduced and reduced layers,



and(3) dimensionalchangecausedby thephasetransitionat theCurie temperature. Theextent

of the curvatureof a Rainbowcanbesimply representedby its domeheight which is measured

astheheightof thedomedstructurerelativeto theedge. Themagnitudeof thedomeheight for a

given Rainbowsampleis dependenton the original oxide composition,sampledimensionsand

theratioof thereducedthicknessto thetotal thickness(thicknessratio).

The mechanismsmentionedabovefor thecurvatureformationwerederivedon the basis

of theexperimentalobservationsof thecurvaturedevelopmentduring theRainbowprocessing.

No quantitativeevaluationshave yet been carriedout as for the relative magnitudeof each

contributionandthe influenceof samplecompositionandreductionconditionson it. In addition,

possible effects on the curvatureformation of high-temperaturecreepoccurring during the

reductionprocesshasnot beenconsidered. Given the high internal stressdeducedfrom the

magnitudeof the curvature,creepmay havea markedimpacton the curvaturedevelopment.

Moreover,in a few unusualcases,a spontaneousreversalof thecurvaturefrom apositive value

(reducedside concave),which is normally seenfor a ferroelectriccomposition,to a negative

value was observed. It is worthwhile mentioning that the curvaturefor an antiferroeletric

compositionusuallyexhibitsanegativevalue[4].

The current work was aimed to achieve a more thorough understanding of some of the

issues relevant to the formation and change of the domed structure of the Rainbow ceramic.

These issues are concerned with the effect of high-temperature creep, the relative magnitude of

each mechanism for the curvature formation, and the spontaneous curvature reversal.

2. Sample Preparation
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A numberof compositionsfrom the PLZT systems were chosen, which include PLZT

1.0/53/47, 5.5/56/44, and 9.5/65/35. Conventional mixed-oxide processing techniques were

employed to prepare the sample powders, which were sintered in an oxygen atmosphere or by

hot-pressing. Details of the preparation procedure were reported elsewhere [1]. The sintered

sample slugs were sliced into wafers or strips of different dimensions. The ceramic wafers were

then chemically reduced to obtain the Rainbow samples via the standard Rainbow processing

route. Some of the samples were fully reduced for the determination of creep characteristics in

the reduced layer. Commercial PZT-based ceramics were also used to produce some of the

specimens.

3. Experimental Results and Discussion

3.1 Effect of High-Temperature Creep on Rainbow Curvature

In order to assess the possible influence of high-temperature creep on the evolution of

Rainbow's domed structure, creep characteristics of both unreduced and fully reduced samples

were examined and analyzed. Strip-shaped samples with dimensions of 25x5x0.5 mm were

tailored from the unreduced and fully reduced wafers. These samples were placed across two

zirconia setters on a refractory plate with a separation of 20 mm, as is depicted schematically in

Figure 1. The assembly was introduced into a furnace and the samples were thermally treated

under the same conditions as those used in the Rainbow processing (e.g., 975°C for 60-120

minutes). For the fully reduced samples an inert atmosphere with flowing argon gas was

maintained to minimize the reoxidation that otherwise would completely reoxide the sample if

testing were carried out in air. This thermal treatment lead to a permanent bending deformation



of the samplesas a result of the high-temperature creep driven by the sample's self-weight. In

some test cases, an alumina ball of 5.5 grams was placed on the samples, as shown in Figure

l(b), to enhance the creep process. After cooling down to room temperature, the bending

deflection in the middle of a sample was measured on a setup equipped with an LVDT.

Table 1 displays the data of creep-induced bending deflection divided by the thickness of

the sample. Without extemal loading the bending deflection was only a few percent of the

thickness for all the unreduced samples tested. The deflection value for PLZT 5.5/56/44 was

approximately twice as large as those for PLZT 1.0/53/47 and PLZT 9.5/65/35. Dramatic

increase in the bending occurred when a load of merely 5.5 grams was applied to the samples

during test. In this case, the bending deflection for sample PLZT 5.5/56/44 was found to be

more than three times of its thickness. Meanwhile, the difference in the deflection magnitude

between PLZT 5.5/56/44 and the other two compositions became much more appreciable. It is

clear from these results that the unreduced PLZT 5.5/56/44 has a much stronger creep effect than

PLZT 1.0/53/47 and PLZT 9.5/65/35. The creep characteristics for the fully reduced samples,

however, were very similar regardless of the original PLZT compositions, as is clearly shown in

the table. This is not surprising since the microstructure and composition in the reduced samples,

as indicated in our previous work, are very similar for a wide range of PLZT compositions.

Table 1 also shows the dependence of the creep-generated bending deflection with temperature.

An accelerated increase of creep with increasing temperature was observed.

Generally speaking, the high-temperature creep in the PLZT oxide layer of a Rainbow

tends to undermine the Rainbow's curvature by adapting a shape that effectively releases the

dimensional mismatch between the unreduced and the reduced regions and consequently reduce

the internal stress. The same process is also expected to happen in the reduced layer which
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shouldbemorepronouncedsincethereducedlayercontainsa greatdealof metallic lead phase.

On quite contrary to these expectations, experiments showed that the Rainbow samples made of

PLZT 5.5/56/44, which has a much stronger creep effect suggested in the above analyses,

exhibited a larger dome curvature than those Rainbow samples produced from PLZT 1.0/53/47

and PLZT 9.5/65/35. In addition, no noticeable influence of creep in the reduced layer on the

curvature could be deduced from these experiments.

To further explore any effect of high-temperature creep on the curvature development, the

reduced layer of several Rainbow samples made from these compositions was carefully removed

using sandpaper, and the curvature of the remaining oxide layer was determined. It was found

that for samples made from compositions 5.5/53/47 and 9.5/65/35 the oxide layers straightened

out almost completely to its original fiat state after removal of the reduced region, while for

composition 1.0/53/47 a small curvature was retained on the oxide layer. The latter was

considered to result from the preferential domain alignment created by the initial internal stress,

which has been confirmed by the fact that the retained curvature disappeared after heating the

sample slightly over its Curie point. This result appears to further suggest that no significant

effect of creep was present during the Rainbow process.

The unexpectedly insignificant influence of creep on the curvature formation seems

difficult to perceive considering the high levels of the internal stress. A possible explanation

may be related to the fact that the Rainbow process involves dynamic creep behavior which

probably can not be interpreted solely on the basis of the steady state creep characteristics. A

better understanding of this phenomenon apparently demands further experimental efforts.

3.2 Development of Domed Configuration during Rainbow Processing



An investigation of the evolution of the dome-shaped configuration in Rainbow ceramics

should be of help to understand the reduction kinetics involved as well as to obtain deep insights

into the mechanisms responsible for the curvature occurrence. To this end, the curvature of

Rainbow samples with different compositions was monitored during the cool down step and their

dome height was determined in situ with the help of a setup depicted schematically in Figure 2.

In this experiment, a sample wafer was reduced at an elevated temperature for 1-3 hours via the

standard process procedure. The sample together with the graphite block and the protecting

zirconia disk was pulled out of the furnace and placed on a refractory brick. A thermocouple was

immediately inserted into the carbon block through a hole in another zirconia disk next to the

Rainbow sample. Two alumina rods that each terminated with a dial micrometer were positioned

to the respective zirconia disks on the carbon block. This arrangement was designed to ensure

that the recorded temperature closely represents the actual temperature on the Rainbow sample

being measured. The change of the dome height with temperature during cooling was

determined from the difference in the readings of the two micrometers. In a similar setup, two

samples with different compositions were chemically reduced on the same carbon block and a

series of pictures were taken as the sample temperature dropped.

Figure 3 shows the variation of the dome height with temperature during the cool down

step for a number of Rainbow samples having different compositions. The designations for

RB1053HP and RB1053S denote Rainbow samples made from wafers prepared by hot-pressing

and sintering routes, respectively. The main difference between them is that the hot-pressed

wafers have a higher density (close to the theoretical density) than that of the sintered wafers

(about 96% the theoretical). As shown in Figure 3, the RB1053S sample showed no noticeable

curvature at the reduction temperature and remained fairly fiat until a temperature close to the
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Curie point, which was approximately350°C for this composition,was reached. Significant

curvaturebeganto developasthesampleunderwentaphasetransition. Thecurvaturecontinued

to grow gradually as the sampletemperaturesteadilydroppedto room temperature. A very

similar behaviorwasobservedfor sampleRB1053HP,exceptin this casethat a small curvature

wasalreadypresentbeforecooling.

Unlike composition1.0/53/47,RB5556Sand RB9565Sshoweda significant curvature

before the cool down process. Therewere only slight changesin the dome height as these

samplescooleddown to room temperature.The relativelysuddenincreaseof the domeheight

for RB5556Sat around200°Cwasattributedto the paraelectric to ferroelectric phase transition.

No such change, however, was observed for RB9565S because of the relaxor nature of this

composition which leads to a diffuse phase transition. Using the results in Figure 3, the relative

contributions of three mechanisms mentioned in the Introduction can be estimated quantitatively.

Taking RB1053HP as an example, the data were replotted in Figure 4, with two dashed lines

drawn across the figure to make intercepts at the vertical axis. Of these two lines, the horizontal

one indicates the portion of the dome height developed at the reduction temperature, and the

other line shows the average slope of the curve excluding the effect of the phase transition.

Clearly, the three sections of the dome height created by the intercepts, as is shown in Figure 4,

correspond to the three different contributions, namely the volume change in the reduced layer,

the difference in thermal expansion coefficients between the oxide and reduced layers, and the

dimensional change at the Curie point.

The relative contribution of each mechanism for those samples shown in Figure 3 was

determined with the aforementioned method and the results are given in Table 2. As can be seen,



the volumechangedueto thereductionprocesswasdominantfor RB5556andRB9565samples

whereasfor RB1053samplesthecurvaturewasmainly causedby the dimensionalchangeat the

phasetransition.

Pictures in Figures 5 and 6 display changesof the curvaturewith temperaturefor a

numberof Rainbowsamplesduring the cool downprocess.Thesignificant domeheight at the

reductiontemperatureandthecurvaturechangeneartheCuriepoint wereclearlyevident in these

figures. It is worth mentioningthat in a similar experimentwherea sampleof composition

1.0/54/47was reducedfor a much longer time, e.g. 180minutes,an appreciablecurvaturewas

alsoobservedat the reductiontemperature.This suggeststhat thecontributionto the curvature

formationalsodependsonthereductionconditions.

3.3 Spontaneous Curvature Reversal

In a few unusual situations, Rainbow samples were found to change spontaneously from

its initial curvature with a concave reduced side to a curvature with a convex reduced side. In

other words, the curvature is gradually reversed without external influences in these samples. It

was found that this curvature reserval process proceeded very slowly. It usually took more than a

year for the curvature to become totally reversed. At the present time this phenomenon was

exclusively seen in the Rainbow samples made from PZT-based ceramics. It is apparent that an

understanding of this behavior of Rainbow ceramics is vital for long-term use of this new device.

At the first glance, the curvature reversal process seems running against the minimum

energy principle of a system. It would be more perceivable if the curvature change ceases when

the sample becomes flat. The spontaneous curvature reversal may result from a spontaneous

dimensional change of either the oxide layer or reduced layer, or both. But careful examinations



revealedthat the reducedregionswere most likely to be expanding. Given the fact that the

curvaturereversalwasvery significantin the samplesthat exhibitedsuchaneffect, the reversal

processmust involve occurrenceof new phase(s)and/orstructuraltransformationof the initial

phasesinto the phaseswith a largerunit cell volume. With this consideration,focuswas first

placedon thepossibility of anycompositionalandstructuralchangesin thereducedlayerastime

passes.

Figure 7 shows the X-ray diffraction spectraof the Rainbow samplesin which the

spontaneouscurvaturereversalwasobserved. In this figure, the PZT Rainbow sampleswere

madefrom wafersprovidedby acommercialcompany.Theexactcompositionfor themwasnot

clear. The PLZT Rainbow samplewas obtained from hot-pressedwafers of composition

1.0/53/47,which canalsobe regardedasa PZT-basedcomposition.A strongpeakin the X-ray

diffraction spectrumof the PLZT Rainbow,which correspondsto Pb203,wasdiscovered.This

samepeak was either very weak or simply did not exist for the Rainbows of the same

compositionthat show no tendencyof a spontaneouscurvaturereversal. Similarly, the X-ray

diffraction peaksof Pb203wereobservedin the PZT Rainbowsamplesasshownin Figure 7.

Basedon these findings, it was speculatedthat the gradual inversion of the curvaturemay

originatefrom the slow transformationof thePbOphases(lithorgeandmasscot)to Pb203 in the

help of ambient oxygen. This appears reasonable since the latter has a larger unit cell volume

than the former [6]. It should be noted that the relative intensity of the peaks in the X-ray

patterns displayed in Figure 7 is not necessarily proportional to the amount of the phase that they

refer to. In addition to the phase content, the peak intensity also depends heavily on some other

factors such as sample surface states and grain sizes. For this reason, the phase content generally

can not be derived on the basis of the peak intensities.
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Similar X-ray diffraction analyseswere carriedout on the oxide layer of the Rainbow

samplesthat exhibited a curvature reversal and on the unreducedsamplesof the same

composition.Theresultsaredisplayedin Figure8, which indicatefrom the sameX-ray patterns

of thetwo casesthat nostructuralchangeand/orphasetransformationhaveoccurredin theoxide

layer.

Theabovespeculationon thepossibleorigin of thespontaneouscurvaturereversalneeds

to beconfirmedby carefulquantitativeanalysisof the relativeconcentrationof eachphaseasa

function of time. Moreover,othermechanismsarealso possible,which include, for example,

gradualdecompositionof anexistingphaseinto otherexistingphases(e.g.,ZrTiO4into TiO2and

ZrO2),since sucha processwill not be revealedfrom the conventionalX-ray spectrum. The

spontaneouscurvaturereversalhas never beenobservedin PLZT Rainbow sampleswith a

lanthanumconcentrationgreater2 atm%. It is interestingto note that a slight increasein the

lanthanumcontenthassucha profoundimpacton thecurvaturereversalphenomenon.Further

work is requiredfor aclearerpictureof this issue.

4. Summary and Conclusions

Several issues associated with the onset and development of the unique domed structure

of the Rainbow ceramic have been investigated using samples made from a number of different

PLZT compositions and commercial PZT ceramics with intent to obtain a more thorough

understanding of the factors that influence the magnitude and sign of the dome curvature. It

appears that the effect of the high-temperature creep on the curvature is insignificant based on the

creep characteristics determined from the reduced and unreduced samples of a series of

compositions. The major contributors to the curvature formation are those proposed in our
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previous work, which are the volume changein the reduced layer, the thermal expansion

mismatchbetweenthe unreducedandreducedlayers,and the dimensionalchangeat the Curie

point. It was found that the relativemagnitudeof eachcontributionto the curvaturedepends

stronglyon thecompositionof the unreducedwafer in additionto thereductionconditions. For

PLZT 1.0/53/47wafers,thecurvatureis predominantlydeterminedby thedimensionalchangeat

the Curie temperature. This contribution decreasesdrastically with increasing lanthanum

content. On the other hand,the contribution from the volume changein the reducedlayer

becomesincreasinglydominantastheLacontentincreases.Thecontributionfrom themismatch

in the thermalexpansioncoefficientsbetweenthe unreducedandreducedlayersaccountfor an

approximatelyequalamountfor compositionsPLZT 5.5/56/44and PLZT 9.5/65/35,while that

for PLZT 1.0/53/47is insignificant.

The mechanismunderlying the spontaneouscurvature reversal has not been fully

established,althougheffortshavebeenmadein this studyto identify the formationof any new

phaseswhich wereconsideredto bemostlikely theorigin of thisunusualphenomenon.An extra

peakcorrespondingto Pb203wasfoundin theX-ray spectraof thereducedlayerof the Rainbow

samplesexhibitingthecurvaturereversal.Thepresenceof thisnewphaseis probablyassociated

with the spontaneouscurvaturereversalin thesesamples.But careful quantitativeanalysesare

neededbeforeanysolidconclusioncanbedrawnon this issue.
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Table 1. Creep-induced bending deflection divided by sample thickness obtained under different

temperatures and load conditions (data are given in percentage).

Unreduced Sample Chemically Reduced

With Load Without Load Without Load

975"C 950"C 975"C 1000"C 975"C
PLZT 1.0/53/47 28.9 2.1 2.4 3.5 6.2

PLZT 5.5/56/44 309.6 5.0 6.0 7.7 4.8

PLZT 9.5/65/35 24.6 2.8 3.1 3.8 6.6

Sample dimensions = 25×5 ×0.5 mm; load = 5.5 grams.

Table 2. Relative contribution of three different mechanisms for the curvature formation.

Sample Volume Change in the

Reduced Layer.

Thermal Expansion Phase Transition at

Mismatch the Curie Point

RBIO53HP 11% 15% 74%

RB1053S 0% 3% 97%
RB5556S 67% 14% 19%

RB9565S 77% 15% 8%

Sample dimensions: 3 !.75x0.675 mm; Reduction conditions: 975°C for 90 minutes.
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Figure 1. Schematic diagram of setup for determination of the creep characteristics
of unreduced and reduced ceramics.
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Figure 2. Schematic of measuring setup for temperature dependence of dome height.
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Abstract

Dielectric nonlinear behavior was investigated for 1/53/47 PLZT ceramics with

different grain sizes. Different grain sizes were achieved by employing various sintering

conditions. By measuring the dielectric constant as a function of ac electric field at various

temperatures and frequencies, it was found that the dielectric nonlinearity was affected by

grain size, i.e. the samples having larger grains showed a higher degree of dielectric

nonlinearity. In addition, the dielectric nonlinearity was found to be influenced

substantially by the frequency of applied field and sample temperature. Analysis of x-ray

diffraction along with other experimental results indicates that a variation of 90 ° domain

wall contribution is the main cause of the variation of dielectric nonlinearity.

Introduction

Nonlinear behavior of ferroelectric ceramics has been studied over many decades

in association with their practical application.[1-3] As a terminology, nonlinearity means

that material properties such as permittivity and piezoelectric constants vary as a function

of applied electric field or stress. In ferroelectric ceramics, the piezoelectric and dielectric

constants are commonly observed to increase with an increase of the applied field. [ 1] This

nonlinearity becomes more significant as driving field increases. In this nonlinear region,

the constitutive equations which are applicable at low fields may no longer be applicable,

and thus the nonlinearity becomes one of the limiting factors for proper design of

ferroelectric devices. Therefore, further information and more fundamental treatment of



the nonlinear behavior is required for the proper applicationof ferroelectric ceramic

materials.

The dielectric nonlinearity of ferroelectric ceramics can be described by

incremental changes in permittivity which is induced by electric field. This increment of

permittivity begins to increase when the applied electric field exceeds a certain value.J4]

Although, the nonlinear behavior of dielectric properties can be generally observed in most

ferroelectric ceramics, the quantitative incremental change of dielectric constant was found

to be strongly dependent upon composition.J5,6] For example, the increase of dielectric

constants measured from PZT-4, -5, and -8 under elevated electric field were quite

different.[1] In case of the soft PZT-5, the dielectric constant increased faster than those

of the other compositions.

It is known that the dielectric nonlinear behavior of ferroelectric ceramics is

affected by factors such as sample temperature, frequency of applied field, and stress

conditions.[ 1,7,8] Experimental results showed that the degree of dielectric nonlinearity of

PZT-5 increased as temperature increased, provided the temperature is below the Curie

point.[1]. The effect of frequency on nonlinear behavior can be found from several

experimental results.[7,8] It was reported that nonlinear behavior was observed at all

frequencies when a large electric field was applied to the ferroelectric samples. In addition,

the dielectric nonlinearity became less appreciable at high frequencies. These described

experimental results were considered to indicate the dependency of dielectric nonlinearity

on sample temperature and frequency of electric field.

The theory which could predict the nonlinear behavior offerroelectric ceramics has

not yet been developed. However, according to present experimental results,[1,6,8] 90 °



domain wall motion is commonly considered to be the main cause of the nonlinear

phenomenon in ferroelectric ceramics. Arlt et.al, proposed the theoretical model which

explained the nonlinear variation of permittivity on the basis of movement of 90 ° domain

walls. [9] In their model, they suggested that the additional switching of 90 ° domain walls

induces the change of polarization and strain. Recently, several studies investigated the

domain wall contribution by employing x-ray techniques and analyzing hysteresis

loops.J4,7] In their investigation, the x-ray peak intensities of the (002) and (200) planes

were measured under elevated electric fields. It was reported that the peak intensity ratio

between the (002) and (200) planes increased with an increase of electric field. This result

was accepted as evidence of 90 ° domain activity.

Material properties of ferroelectric ceramics are influenced by microstructure as

well as composition. Previous studies regarding the effect of grain size showed that

material properties such as remanent polarization (PR), coercive field (Ec), and Curie point

(Tc) vary as a function of grain size.J10,11] Dielectric constants measured on BaTiOa

having various grain sizes exhibited a maximum at a grain size of around 1 l.tm.[12] This

variation of dielectric constant as a function of grain size was explained on the basis of the

variation of the internal stress and formation of domain structure which was considered to

depend on grain size.[12,13]

This study focused on the effect of grain size on the nonlinear dielectric behavior

of ferroelectric ceramics. Although many studies have been performed to investigate

effects of grain size on the material properties at low electric field, only limited studies has

been reported regarding the effect of grain size on nonlinear behavior which occurs at high

electric field. In this study, the composition 1/53/47 PLZT, which has a ferroelectric



phase,wasselected.Dielectric constants were measured from the samples having various

grain sizes as a function of ac electric field at different temperatures and frequencies. To

analyze the contribution of 90 ° domains on the dielectric nonlinear behavior, XRD

techniques were employed to show the variation of the peak intensities of the (002) and

(200) planes. These 90 ° domains were considered to the main cause of the dielectric

nonlinearity.

Experimental

PLZT 1/53/47 ceramics having different grain sizes were prepared in order to

investigate the effect of grain size on the dielectric nonlinearity in ferroelectric ceramics.

Samples were prepared employing the conventional mixed-oxide method. Appropriate

amounts of PbO, La203, ZrO2, and TiO2 powders were weighed out, calcined at 925 °C

and ground using a ball mill and distilled water as a grinding media. The prepared powder

was pressed in a cylindrical die and sintered in an electric furnace. In order to obtain

various grain sizes, the sintering temperature and time were controlled in the range of

1150 - 1250 °C and 5 - 15 hrs, respectively.

Because the material properties of PLZT ceramics may be influenced by the

density of samples which, in turn, depend on the sintering conditions, an effort was made

to control the grain size of the samples without a serious variation of density. To obtain

high density samples, a setting powder (1:1 mixture of PbO and ZrO2 powder) and oxygen

atmosphere were used during the sintering process.[9] Table 1 shows the density and grain

sizes of the samples prepared under various conditions. As shown in Table 1, the samples



with differentgrain sizeswere fabricatedwithout seriousloss of the density, thus the

obtained results could be considered to be primarily due to grain size. The grain sizes of

the prepared samples were measured using the line intercept method. For better accuracy,

the average value determined from 10 measurements was accepted as the grain size of the

sample.

The dielectric constants of the samples having different grain sizes were measured

as a function of ac field in order to investigate the effect of grain size on nonlinear

dielectric behavior. With increasing ac electric field, the variation of dielectric constant

was measured using an LCR meter (HP 4284A). An ac electric field of up to 400 v/cm

was applied at a frequency of 1 kHz. Because the dielectric nonlinearity can be affected by

the temperature of the sample which may increase under high electric field, the

measurements were carried out in an oil bath to keep the sample temperature constant.

The effects of sample temperature and frequency of applied field, which were

known to influence to the dielectric nonlinear behavior, were investigated by the

determination of dielectric constants as a function of ac electric field at various samples

temperatures and frequencies of the applied field. The investigated range of the frequency

and temperature were 20 Hz - 10 kHz and 25 to 160 °C, respectively.

As reported in previous studies, because the dielectric nonlinearity was considered

to be related to a contribution of 90 ° domain wall, the x-ray peak intensity of (002) and

(200) plane were investigated. The intensity ratios of the (002) and (200) planes were

measured for the samples having various grain sizes at different dc electric fields (0 and 9

kv/cm). The measured intensity ratios at two different conditions were plotted as a

function of grain size. For analysis of the contribution of 90 ° domains to the dielectric



nonlinearity, the variation of the ratios induced

investigated as a function of grain size.

by an applied electric field were

Results and Discussion

Fig. 1 shows the SEM microphotographs obtained from the samples sintered under

various conditions. The grain size increased gradually with increasing sintering

temperature and soaking time. As indicated in Table 1, the obtained grain sizes were in the

range of 3 to 10 l.tm. Due to evaporation of PbO from the samples, the density decreased

when the sintering continued for long times at high temperature. In this study, by using the

setting powder and oxygen gas described in the experimental procedure, the various grain

sizes were obtained without sacrifice of density. The relative density of the samples was

kept over 96% of theoretical.

To quantitatively evaluate the nonlinear dielectric properties, several parameters

have been defined. These include; (1) change of dielectric constant (AK), (2) average

change of dielectric constant with a change in applied field (AK/AE), and (3) threshold

field (Et). The change of the dielectric constant (AK) was defined as the incremental

difference of the dielectric constant induced by an applied electric field. As shown in Fig.

2, the change of the dielectric constant became significant when the electric field was

applied higher than a certain value. This electric field (threshold field, Et) was considered

to be the starting point of the nonlinearity. As used in previous study,[4] the point where

the dielectric constant increases by 2.5% was selected as the threshold electric field (Et).

The average change of dielectric constant (AK/AE) was defined as the slope of the AK



plotted as a function of ac electric field. Because the increment of dielectric constant

becomes significant over the threshold field (Et), AK/AE values were calculated from a

difference of the dielectric constant measured at threshold field and 400 v/cm, which can

be described as

AK

AE

_ K(E = 400) - K(Et)

400- El

where K(E = 400)

respectively.

and K(Et) are dielectric constants at E = 400 v/cm and Et,

The change of dielectric constants (AK) which were measured from the poled

samples having different grain sizes were plotted as a function of ac field in Fig. 2. The

nonlinear dielectric behavior of PLZT ceramics is clearly evident. The increment was

negligible when the field strength was low. However, an appreciable increment was

obtained at elevated field strength. It is noted that the increment of dielectric constant was

dependent on the grain size. For quantitative comparison of dielectric nonlinearity

obtained from the samples having different grain sizes, the average change of dielectric

constant (AK/AE) occurring at elevated ac field was plotted as a function of grain size in

Fig. 3. As is shown in Fig. 3, the AK/AE increased with increasing grain size. The obtained

results showed that the dielectric nonlinearity of the PLZT ceramics was influenced by

grain size.

The threshold field (Et), plotted as a function of grain size, is shown in Fig. 4 as

another parameter for evaluation of the dielectric nonlinearity. As described, the values

were obtained from the increment plot in Fig. 2 as the field strength where AK reaches



2.5% of the dielectric constant at low field. Fig. 4 shows the threshold field plotted as a

function of grain size at two different temperature conditions. The threshold field obtained

from both conditions decreased as a function of increasing grain size. Combined with the

results shown in Fig. 2, the decrease of Et was considered to imply that the samples

having larger grains show higher dielectric nonlinearity.

The experimental results obtained at various temperatures and frequencies show a

substantial dependence of the dielectric nonlinearity on temperature and frequency. In

addition, the dependence of dielectric nonlinearity on both factors was also observed to

vary as a function of grain size. The AK/AE was calculated from the plot of AK vs. ac

electric field obtained at different temperatures. The tested temperatures were 25, 100,

and 160 °C which were lower than the Curie temperature, thus the samples have

ferroelectric phases. As shown in Fig. 5, the variations of the AK/AE were plotted as a

function of the sample temperature which were obtained from several samples having

different grain sizes. All of the samples showed an increase of the AK/AE values with an

increase of temperature. This result indicated that the dielectric nonlinearity is enhanced

with increasing temperature. In order to investigate the grain size effect, the variation of

the AK/AE caused by the variation of the temperature was plotted as a function of grain

size in Fig. 6. Each plot in Fig. 6 represents the difference of AK/AE caused by two

different sample temperatures which are indicated on the plots. These plots show that the

larger difference of AK/AE occurred in the samples having larger grains, when the sample

temperatures increased. The obtained results imply that the influence of temperature on

the dielectric nonlinearity was greater when the grain size was larger.



To investigate the effect of frequency, the increment of dielectric constant (AK)

was measured as a function of ac field at frequencies between 20 Hz and l0 kHz. The

AK/AE was calculated from these measurements as a parameter for evaluation of the

dielectric nonlinearity. As plotted in Fig. 7, the AK/AE obtained from the samples having

different grain sizes decreased as a function of frequency. It was observed that the slope of

the AK/AE varied as a function of grain size. The difference of AK/AE induced by the

variation of frequency increased with increase of grain size (Fig. 8). This result was also

considered to show that the samples having the larger grains possess greater dependence

of dielectric nonlinearity on the frequency of the applied electric field.

The variation of Et shown in Fig. 4 is also considered to be evidence of the

dependence of dielectric nonlinearity on the sample temperature. As plotted in Fig. 4, the

threshold field (Et) values measured at two different temperatures gave different values.

The Et was found to decrease as the sample temperature increased. These results are

considered to be another evidence that the dielectric nonlinearity is substantially affected

by sample temperature. In addition, the difference of Et measured at two different

temperatures was observed to be greater with increasing grain size. It can be mentioned

that the dependence of dielectric nonlinearity on the sample temperature was greater in the

samples having larger grain.

In poled ferroelectric ceramics, a significant amount of domains are aligned with

the poling direction. The amount of alignment depends on the crystal structure.[ 14] This

alignment process may be influenced by the microstructure, including grain size and

porosity. When an electric field is applied to a poled sample, additional domain switching

can be induced corresponding to the strength of the applied field. It is known that 90 °



domain switching causes variations of polarization and strain,[3] and the additional

domain switching may cause variation of material properties of ferroelectric ceramics such

as dielectric and piezoelectric constants. Therefore, the nonlinear behavior which is

observed at high electric fields is considered to be associated with the contribution of

domain switching occurring at high electric fields.

The domain switching process under an applied field may be influenced by the

temperature of the sample and frequency of the field. Because the switching of domains is

related to the movement of atoms constituting the unit cell in response to the electric field,

the switching process can be activated by additional thermal energy. Also, the response of

a domain exhibits a time dependent characteristic which is usually called an electric

relaxation. Due to this relaxation, the domain switching is influenced by the frequency of

applied field. Consequently, the dielectric properties can vary as a function of temperature

and frequency.

The domain structure is considered to be configured in a manner to minimize strain

energy induced during a phase transition from cubic to ferroelectric phases (tetragonal,

rhombohedral) which occurs below the Curie temperature. It was reported that there were

several types of energy related to the formation of a domain structure.[15] They were

domain wall energy, elastic energy caused by deformation of grain, and grain boundary

energy originating from mismatched configuration between grains. Therefore,

characteristics of domains such as density and mobility of domain walls may vary as a

function of grain size. When an electric field is applied to a ferroelectric ceramic, the

response of the domains to an applied field may depend on the characteristics of the



domains.Consequently,the domainswitchingprocessoccurringat high appliedfield is

consideredto beaffectedbythegrainsizeof samples.

The effect of grain size on dielectricnonlinearitywhich is observed in these

experimentsareconsideredto be relatedto the differentcontributionof 90 ° domain walls.

The experimental results plotted in Figs. 2, 3, and 4 show that the dielectric nonlinearity

increases as a function of grain size. These are considered to be a result of increased

contribution of the 90 ° domain with increasing grain size.

The nonlinear dielectric behavior observed at various temperatures and frequencies

is also explainable on the basis of domain wall contribution. The increase of nonlinearity at

high temperatures (Figs. 4, 5 and 6) may be induced by the thermal activation of domain

switching. The increase of nonlinearity in larger grain samples at high temperature (Fig. 6)

can be explained as a result of the increased contribution of 90 ° domain walls. Regarding

the effect of frequency, the decrease of nonlinearity shown in Fig. 7 is considered to be

caused by domain relaxation. The variations of nonlinearity plotted as a function of grain

size (Fig. 8) can be considered as additional evidence for the increase of the contribution

of 90 ° domain walls with increasing grain size.

Variation of 90 ° domain wall contribution could be detected by crystallographic

investigations performed by using X-ray techniques. The obtained results show the

evidence of 90 ° domain contribution to the dielectric nonlinear behavior of the samples

having different grain sizes. Fig. 9 shows the peak intensity ratios of the (002) to (200)

planes obtained from the poled samples having different grain sizes. As shown in Fig. 9

(a), the ratio increased as a function of grain size at both bias conditions (bias free and 9

kv/cm ). When the strength of the applied field is greater, the intensity ratio of the (002) to



(200) planeswas larger in everysamplehavinga differentgrain size.As shownin Fig. 9

(b), it is noticeablethat the variationof the ratiosbetweenzero field and field applied

increaseswith increasinggrainsize.This meansthat more90"domainswitchingis induced

in thesampleshavinglargergrainsunderanappliedelectricfield.

Conclusion

The effect of grain size on dielectric nonlinearity was investigated in ferroelectric

ceramics. For the investigation, 1/53/47 PLZT ceramics having different grain sizes were

used. The grain size could be controlled in the range of 3.4 to 10 l,tm by changing sintering

conditions. It was found that the dielectric nonlinearity increased gradually with increasing

grain size. There was a substantial variation of dielectric nonlinearity according to the

sample temperature and frequency of the applied field. Obtained results could be explained

on the basis of the contribution of 90 ° domains which were induced at elevated electric

field. A crystallographic investigation employing XRD techniques gave good evidence of

the contribution of 90 ° domains to the obtained dielectric nonlinearity of the ferroelectric

samples. In the samples having large grain size, the contribution of 90 ° domains was found

to be enhanced.
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Table 1. The density and grain size of PLZT samples fabricated at various sintering
conditions.

Sintering 1150°C 1175°C 1200°C 12250C 12500C 1250°C

Conditions 5hrs 5hrs 5hrs 5hrs 5hrs 15hrs

Density

(g/cm 3) 7.8 7.8 7.75 7.79 7.72 7.65

Grain Size

(Iam) 3.4 4.5 5.5 6.2 7.4 10.0



(a) (b) (c)

(d) (e)

FIGURE 1 SEM micrographs of 1/53/47 PLZT ceramics sintered at various conditions

(x2,5oo)
(a) 1100 °C, 5hrs (b) 1150 °C, 5hrs (c) 1200 °C, 5hrs

(d) 1250 °C, 5hrs (e) 1250 °C, 15hrs
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I. Introduction

Nonlinear behavior is commonly observed in ferroelectric ceramics when high

electric field is applied. As a terminology, nonlinearity means that material properties

such as dielectric and piezoelectric constants vary as a function of an applied electric

field. In ferroelectric ceramics, linearity between components of stress and strain,

dielectric field and displacement, and strain and electric field is limited to very low

electric field. Most ferroelectric ceramics show significant nonlinearity with increasing

electric field. In general, the dielectric and piezoelectric constants increase with

increasing applied field. For the nonlinear behavior, the constitute equations are no longer

valid. Considering that the piezoelectric devices are usually operated at high electric field,

the nonlinear behavior becomes a limitation factor for proper design of ferroelectric

devices.

It has been considered that the nonlinear behavior originates from response of the

ferroelectric domains to an applied electric field. According to Arlt et. al, the domain

switching which is induced by an applied field results in variations of the dielectric and

piezoelectric constants. Based on a theoretical model, they expressed these variations as

linear functions of the movement of 90 ° domain wall. Recently the domain structure was

investigated using X-ray diffraction techniques. The results showed evidence for domain

wall contributions to nonlinear behavior.

As is known, the Rainbow ceramic has a complicated internal stress pattern. The

domain orientation of the oxide layer is critically affected by the nature of the intemal

stress. There are several papers published which refer to the formation of internal stress



and its contributionto the field-induceddisplacementof Rainbowceramics.In general,

the internal stressis relatedto the curvaturewhich is determinedas a function of

thicknessratiobetweentheoxideandreducedlayers.Thepiezoelectricperformancealso

varysasa functionof thethicknessratiosothat is associatedwith the intemalstress.

Being associatedwith the domainswitchingprocess,the nonlinearbehavior is

subjectedto stressappliedto thepiezoelectricsamples.This studyis concernedwith the

piezoelectricnonlinearityof theRainbowceramics.Owing to thehigh displacementwith

good load bearing capacity, the Rainbow ceramics are considered as promising

piezoelectric devices for actuators and transducers.As pointed out in previous

paragraphs,nonlinearphenomenaare expectedat the high electric fields where this

device are usually operated. Therefore, an understanding of the nonlinearity is necessary

to develop the Rainbow ceramics for proper applications. It is the main purpose of this

research to investigate the variation of the piezoelectric nonlinear behavior for the

Rainbow ceramics having various levels of internal stress. For analysis of the

contribution of 90 ° domain switching, the intensities of (002) and (200) planes were

observed from the X-ray diffraction patterns.

2. Experimental Procedure

2.1 Fabrication of the Rainbow Samples

Selection of the experimental material was primarily concerned with ferroelectric

ceramics which are easy to fabricate the Rainbow ceramics. As a proper material, 1/53/47

PLZT ceramic was selected. This composition was used to fabricate the Rainbow



ceramicswith a good reliability in several researches. As reported, the Rainbow ceramics

were fabricated employing the one side chemical reduction process using a graphite

block. The reduction temperature was performed at 950 °C. Based on the fact that the

internal stress is related to the curvature of the Rainbow samples, the curvature was

controlled to obtain various condition of internal stress. The various curvature of the

Rainbow samples were achieved by controlling the thickness ratio which was determined

as a function of the reduction time. In this study, the thickness ratio was defined as the

thickness of the reduced layer divided by the total thickness of Rainbow sample.

2.2 Investigation of the Curvature Formation
v

The curvature of the Rainbow ceramics is considered to depend on the

dimensional changes which could occur during chemical reduction and cooling. For

analysis of the curvature formation, the thermal expansion coefficients were measured for

the PLZT ceramics and the reduced counterparts. The variation of dome height was

directly measured as a function of temperature.

Dilatometer was used for measurement of the thermal expansion coefficients of

both phases. The PLZT ceramics were prepared in bar types (length: 2.5cm, width:

0.6cm, thickness: 0.6cm). For the measurement of the reduced counterpart, the oxide

sample was fully reduced. The measurements were performed with increasing

temperature from room temperature to 950 °C, the temperature at which the Rainbow

samples were fabricated. For accuracy, the rate of temperature increase was limited to 2

°C/minute.



Variations of the dome heights were directly measured. Fig. 1 illustrats the set up

for the dome height measurement. Atter the reduction at 950 °C, the whole assembly was

pulled out from the reduction fumace and placed on the dome height measurement

system. During the cooling, dimensional changes occurred not only the dome height of

the Rainbow samples but also the supporting system including graphite block and

zirconia plates. To obtain variation of the dome height, the shrinkage of the supporting

system was measured simultaneously with the measurement of the total variation. By

compensating the total variation of shrinkage with the shrinkage of the supporting

system, the variation of the dome height was obtained as a function of temperature. To

obtain the true dome height plot as a function of temperature, the sample dome height

was measured at room temperature and employed as a starting point of the plot of the

dome height variation.

2.3 Piezoelectric nonlinear behavior

In Rainbow ceramics, the major displacement occurs in the axial direction for a

given applied field. The axial displacement is the largest and most interesting for

applications of the Rainbow ceramics. Hence, the piezoelectric nonlinear behavior was

investigated for axial displacement. From poled Rainbow ceramics, the uniaxial

displacements were measured with increasing electric field. As illustrated in Fig. 2, dc

electric field was applied in the thickness direction. The response of the axial

displacement was measured using an LVDT (Linear Variable Differential

Transformation) made by Lucas Schaeritz Co. For analysis of the piezoelectric nonlinear

behavior of the Rainbow ceramics, a newly defined parameter called "normalized



displacement" was used. Fig. 3 shows the schematic diagram for the normalized

displacement. As illustrated in Fig. 3, this parameter implies an average uniaxial

displacement per unit applied field. This parameter can be expressed as

Uniaxial Displacement
DNo,_ = (1)

Applied ElectricField

where D,orm represents the normalized displacement. The normalized displacement

obtained from the Rainbow samples having various dome heights was plotted as a

function of electric field.

The contribution of 90 ° domain wall motion to the nonlinear behavior was

investigated employing X-ray diffraction. These experiments were carried out using an

X-ray diffractometer (Sintag XDS 2000 TM) with Ni-filtered Cu Kot radiation. The oxide

side, which was exposed to x-ray, was electroded with aluminum for penetration of the x-

ray beam. The intensity ratios of the (002) and (200) planes were measured for the

samples at various electric fields applied in the thickness direction. To prevent electric

discharge, a thin layer of silicon oil was spread over the sample surface. For accuracy of

the measurement, the raw X-ray diffraction was fitted using statistical functions. In this

experiment, the peak intensities were determined from the X-ray diffraction peaks fitted

to a Gaussian function.

3. Results and Discussion

3.1 Curvature Formation



The Rainbow fabrication process consists of two steps: the chemical reduction at

high temperature and the cooling. During this process, the PLZT oxide experiences

chemical decomposition and physical changes. As a result of chemical reduction, the

reduced layer has quite different phases including several metal oxides (TiO2, ZrO 2,

La203, etc.) and metallic lead. A dimensional change was accompanied the chemical

decomposition. It was observed that the PLZT samples were dimensionally smaller after

reduction. Table 1 shows shrinkages observed from several compositions of reduced

PLZT samples. Depending on the composition, the observed shrinkages were different.

They ranged from -0.2 to -0.5%.

When the reduced samples were cooled down after the reduction, both the reduced

and remaining oxide layer experienced thermal shrinkage. In addition, the oxide layer

may have changed dimensionally during the ferroelectric phase transition at the Curie

temperature. Based on measurements of thermal expansion, the dimensional change

during cooling was investigated. Fig. 4 shows the linear thermal expansion plotted as a

function of temperature for 1/53/47 PLZT oxide and its reduced sample. For the reduced

sample, the thermal expansion was relatively linear from room temperature to the

reducing temperature. The observed linear thermal expansion coefficient was about

9.0x10 6/°C. However, the thermal expansion of the oxide sample varied significantly at

the ferroelectric phase transition Curie point. Above the Curie point, the linear thermal

expansion coefficient was 9.2x10 -6 PC. In contrast, much less thermal expansion was

observed from the ferroelectric phase below the Curie point. Due to the contribution of

volume expansion which generally accompanied the phase transition, slight change of



thermalexpansionwasobservedjust below the Curiepoint. For 1/53/47PLZT ceramics,

the averagethermal expansionfrom room temperatureto the Curie point was4.3x106

/°C.

Table 2 lists the linear thermal expansion coefficients measured from several

compositions of the PLZT ceramics and their counterpart reduced samples. All of the

investigated oxide samples were ferroelectfics, and thus they exhibited thermal behavior

similar to the 1/53/47 sample. When the temperature decreased lower than the Curie

point, the thermal expansion coefficients of the all oxide samples reduced significantly.

As was known, the Curie temperature was dependent upon the composition of the PLZT

samples. For the reduced samples, the thermal expansions were relatively linear in the

whole temperature range. In Table 2, it should be noticed that below the Curie point the

thermal expansion coefficients of the reduced samples were much higher than those of the

oxide samples. Above the Curie point, the difference between both samples were

observed not to be very appreciable. This results implies that the dimensional mismatch

between the oxide layer and the reduced layer of a Rainbow ceramic is caused mostly

below the Curie point.

As discussed, several factors are considered to contribute to the occurrence of the

dimensional differences. To investigate the contribution of each factor, variation of the

dome heights were directly measured as a function of temperature. Fig. 5 shows the dome

height of 1/53/47 PLZT Rainbow ceramics plotted as a function of temperature. The data

were obtained from several Rainbow samples having different dome heights. In Fig. 5, it

was found that a certain amount of dome height was created as a result of the chemical



reduction.The createdamountsweredifferent accordingto the samples.Basedon the

reduction shrinkage listed in Table 1, these results are understandable. As expected from

the thermal expansion measurements, the dome heights were constant until the samples

were cooled down to the Curie point. Below the Curie point, an appreciable increase of

the dome heights has observed. The obtained plots show good agreement with the results

of the thermal expansion behavior.

Similar experimental agreement was observed from the other compositions of

PLZT ceramics. Fig. 6 illustrates variation of the dome height obtained from several

different compositions. In the 5.5/56/44 PLZT Rainbow sample, a significant amount of

dome height was created as a result of the high temperature reduction. This result may be

associated with the relatively large reduction shrinkage of this composition shown in

Table. 1. It can be observed that the temperature for initiation of the dome height increase

gradually decreased with increasing La amount. This can be explained based on the

variation of the Curie point as a function of the La amount which was used to describe the

thermal expansion behavior in Table 2.

The dome height of a Rainbow ceramic is a function of the thickness ratio of the

two layers. Fig. 7 illustrates the variation of the dome height as a function of the

thickness ratio obtained from 1/53/47 PLZT Rainbow samples. As illustrated in Fig. 4,

the dome height generally increases with an increase of the thickness ratio and then

reaches a maximum at a certain ratio. It is known that the shape of this curve (dome

height vs. thickness ratio) is influenced by the material properties of both layers. Similar

to the thermal properties, the mechanical properties also play an important role in



determining the dome height. The mechanicalpropertiesobtained from

ceramicsandthereducedsamplesarelistedTable3.

the PLZT

3.2 Uniaxial Displacement of the Rainbow ceramics

Associated with piezoelectric applications such as actuator and transducer

devices, the axial displacement of the Rainbow ceramic is the most interesting one. The

uniaxial displacement obtained from several Rainbow samples with different dome

heights is plotted as a function of applied field in Fig. 8. The uniaxial displacements

increased as a function of electric field. It was observed that the increasing displacement

behavior depended on the dome height. Fig. 9 shows the variation of the dome height and

uniaxial displacement as a function of thickness ratio. In the low thickness ratio region,

the uniaxial displacements were observed to increase along with increasing dome height

as a function of thickness ratio. However, a further increase of the thickness ratio caused

a decrease of the uniaxial displacement despite an increase of dome height.

Deformation of the oxide layer of Rainbow ceramics was observed to be elastic

deformation. For elastic deformation, the larger deformation indicates larger stress is

applied. Therefore, it can be considered that the Rainbow sample having higher dome

height has larger deformation and thus possesses larger internal stress. Based on this

consideration, at low thickness ratio, the uniaxial displacement of Rainbow ceramics is

considered to increase with increasing internal stress. However, as shown in Fig. 9, there

was an optimum internal stress at which the uniaxial displacement reached a maximum.

The oxide layer usually has two different stress regions. Fig. 10 illustrates the

distribution of the internal stresses and the preferred domain orientation. As shown in Fig.



10, The top side is under tension and the bottom near the reduced layer is under

compression.The boundarybetweenthe two stressregions is called the neutral axis

where the internal stressis zero. The position of the neutral axis is a function of the

curvature.When the domeheight is low, the neutralaxis occursnearthe bottom of the

oxide layer,thusthetensionareabecomeswide.With increasingdomeheight,theneutral

axis moves toward the top side of the oxide layer. Consequently,the tension area

becomessmallerandfinally disappears.It is evidentthatnot only themagnitudebut also

thedistributionof the internalstressisrelatedto thecurvatureof theRainbowceramics.

It is known that the field-induced displacementof piezoelectric ceramics is

influencedby domainorientation.In Rainbowceramics,the contributionof the internal

stresson the field-induceddisplacementis associatedwith the distribution of reoriented

domains.For the Rainbowceramics,domainorientationis parallel to the surfacein the

tension area but perpendicular in the compressionarea as illustrated in Fig. 10.

Dependingon themagnitudeanddistributionof the intemalstress,the curvaturewill be

changed.As a consequence,the domain structureof the Rainbow ceramicswill be

changedwith variationof the internalstressandthusthe piezoelectricperformancewill

be affected.Becausethe distributionof thereorienteddomainsalso play and important

role, it is consideredthat there is an optimum curvature at which the uniaxial

displacementbecomesa maximum.Experimentally,the optimumpoleddomeheight for

maximum uniaxial displacementwasapproximately240 _tm.For the samplehaving a

thicknessratio higher than 0.4, the uniaxial displacementdecreasedwhile the dome

heightincreased.



3.3 Nonlinear Behavior of the Uniaxial Displacement

Based on the uniaxial displacement discussed in previous paragraphs, the

piezoelectric nonlinear behavior was investigated. Using Eq. 1, the normalized

displacement (Dnorm) was calculated from the measured uniaxial displacement. The

normalized displacements obtained from the Rainbow samples having different dome

heights were plotted as a function of applied field in Fig. 11. The D.o_m generally

increased with increasing electric field and reached maximum. For higher electric field.,

the Dno_ tended to decrease. The electric field for the maximum was observed to be

about 10 - 15 kv/cm. Physically, the normalized displacement (Dno,_) means the

displacement induced by a unit applied electric field. Hence the observed variation of the

normalized displacement indicated the nonlinear behavior of the Rainbow ceramics.

In Fig. 11, it is noticed that the nonlinearity of the Rainbow samples was strongly

influenced by the dome height. The sample having a 240 lam dome height showed the

highest normalized displacement. For numerical comparison of the nonlinear behavior,

the difference between the D_o_m measured at low electric field and maximum D,o_m was

calculated. This difference can be considered as a parameter indicating the magnitude of

piezoelectric nonlinearity. Table 4 listed the difference along with the D,o_m measured at

low electric field and maximum D,orm and for the Rainbow ceramics having various dome

heights. From Table 4, it was observed that the difference increases with increasing dome

height. This result implies that the piezoelectric nonlinearity becomes significant with

increasing internal stress. However, the sample having 282 I.tm dome height showed



reducednonlinearitydespiteincreasingdomeheight.This is alsoconsideredto be related

to thedistributionof the intemalstresswhich is describedin previousparagraph.

In Rainbowceramicsassociatedwith the internal stress,thedomainstructureand

its responseto an appliedelectricfield is consideredto be critical for the piezoelectric

performance. The domain structure and 90° domain switching was investigated

employingX-ray diffraction techniques.TheX-ray peakintensityof (002)and(200) was

measuredat various electric fields for analysisof nonlinearity using the Rainbow

samples.Fig 12showsthe variationof the intensity ratio of (002)/(200)peakobtained

from the Rainbow sampleshaving different dome heights. For comparison,the data

obtainedfrom normal1/53/47PLZT wasplottedtogetherusingdottedline.

Theintensityratiosof theRainbowsampleswhich is measuredunderzeroelectric

field was lower than that of normalPLZT. This result indicatesthat the surfaceof the

oxide layer is under tension.As a result of 90° domain switching, the intensity ratios

increased with increasing electric field. It was found that the variation was greater in the

Rainbow samples than normal PLZT. As shown in Fig. 12, variation of the intensity ratio

was observed to be influenced by the dome height. Comparing the piezoelectric

nonlinearity illustrated in Fig. 11 and Table 4, the variation of the intensity ratio was

greater when the sample showed higher piezoelectric nonlinearity. For instance, the

sample having 240 _tm dome height exhibited the largest variation of the intensity. For

the sample having 282 p.m, the intensity increase was observed to decrease. In addition,

the (002)/(200) at zero electric field was found to increase. As explained, this result is

considered to originate from the distribution of the intemal stress.



4. Summary

The piezoelectric nonlinear behavior of 1/53/47 PLZT Rainbows was investigated

phenomenologically. It was observed that the uniaxial displacement of Rainbow ceramics

show significant nonlinear behavior for electric fields under 15 kv/cm. The nonlinear

behavior was associated with the domain structure which is determined by the internal

stress. The results are summarized as follows :

1. The piezoelectric nonlinear behavior of the 1/53/47 PLZT Rainbow ceramics has

investigated. It was found that the Rainbow ceramics showed significant nonlinear

behavior.

2. It was observed that the dome heights were mainly formed below the ferroelectric

Curie temperature. The amount of dome height varied as a function of thickness ratio.

3. The uniaxial displacement of Rainbow ceramics increased as a function of applied

electric field. Furthermore, the increased amount was significantly influenced by the

dome height of the Rainbow samples.

4. For the analysis of nonlinear behavior, normalized displacements were calculated. It

was found that the normalized displacement increased with an increase of applied

electric field and reached a maximum when the electric field reached about 10 - 15

kv/cm.

5. In general, the piezoelectric nonlinearity of Rainbow ceramics increased with

increasing dome height. However, the sample having maximum dome height did not



o

show maximum nonlinearity. This was considered to be related to the distribution of

internal stress.

The variation of X-ray peak intensity ratio of (002) to (200) supported the fact that the

nonlinear behavior was related to 90 ° domain switching. In Rainbow ceramics, this

variation induced by electric field was greater that that of normal PLZT ceramics. It

was considered that the internal stress affected the domain orientation and thus

contributed to the nonlinearity of the Rainbow ceramics.



Table 1Variationof diameterof PLZT ceramic wafers after reduction

Sample before

1/53/47 945.5 mil

5.5/56/44 938.5 mil

8/65/35 906.0 mil

after ratio

942.5 mil - 0.32%

934.0 mil - 0.48%

904.0 mil - 0.22%

Table 2 Linear Thermal expansion Coefficients of normal PLZT and their Reduced

Counterpart

Sample

1/53/47

25 - Tc °C

(10 -6/°C)

4.34

Tc - 950 °C

(10 "6/°C)

9.18

1/53/47R 8.97 9.09

5.5/56/44 2.79 8.05

5.5/56/44R 6.57 6.57

8/65/35 3.57 8.02

8/65/35R

Table 3 Mechanical Properties of Normal PLZT and their Reduced Counterparts

(reduced at 975oc)

Sample

1/53/47

Density

r

(* 103kg/m 3)

7.41

Shear Modulus

G

(* 1010N/m2 )

2.2615

Poisson's ratio

S

Young's Modulus

E (* 1010N/m 2)

0.342

0.390 6.2870

1/53/47R 6.90 1.6343 0.363 4.4551

5.5/56/44 7.54 2.7019 0.374 7.4248

5.5/56/44R 7.13 2.3204 0.348 6.2558

8/65/35 7.51 2.9412 0.362 8.0118

8/65/35R 6.61 2.2598 6.0653



Table 4 Normalized displacements of the Rainbow ceramics having various dome

heights

Dome Height I Dno_ (_rn/(kv/cm))

240 _tm

282 _m

at Low E at High E
t Difference

45 lain 0.20 1.14 0.94

144 p,m 0.70 3.03 2.93

1.30 6.11 4.81

1.10 4.89 3.8



Dial Gauges

_le Rainbow Sample

Graphite

Fig. 1 Set up for measurement of dome height as a function of temperature



LVDT Displacement

Rainbow Sample
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Electric Field

Fig. 2 Setup for displacement measurements



E

Uniaxial Displacement

DN°rm = AppliedElectricField

Fig. 3. Schematic diagram for definition of normalized displacement
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ABSTRACT:

A new approach for the quantitative characterization of the electrostrictive butterfly

loops is presented. Displacement phase angle and internal bias voltage can be

determined with this technique. The model agrees well with the experimental butterfly

loops for PLZT 8.4/70/30 benders. Of the possible contributors to the displacement

phase angle the most important is the dielectric phase angle. The internal voltage, in

addition to shifting the butterfly loop along the voltage axis, is shown to influence the

magnitude of the displacement. An experimentally observed reduction of the

displacement amplitude with increasing frequency was shown to be in part caused by the

reduction of the internal voltage.



I. INTRODUCTION

Considerable progress has been made in characterizing piezoelectric coefficients

as complex quantities. The approaches based on piezoelectric resonance 1, optical

dilatometry 2, and modified Berlincourt piezo d33 meter 3 have been successfully applied

to determine complex piezoelectric coefficients of piezoelectric ceramics and polymers.

The determination of complex piezoelectric constants is more straightforward than that

of complex electrostrictive constants since the angle between the driving field and the

induced strain for piezoelectric materials is independent of time. For electrostrictive

materials, however, the induced strain is proportional to the square of the driving field,

and the angle between the field and strain is not constant. Any model of electrostrictive

response has to agree with the experimentally obtained phase information over the

complete cycle of a periodic waveform.

The electrostrictive coefficients, Mijld and Qijkl, are defined as follows:

sij = MijkiEkE I (la)

sij = QijklPkPl (lb)

where s is strain, E is the electric field, and P is the polarization. For practical

applications the electrical field rather than polarization is more commonly used to

control the strain. In many applications it would be advantageous to have a one-to-one

correspondence between the field and strain, but the electrostrictive materials used in

practice are characterized by the hysteretic butterfly loops. Hysteresis, in addition to

energy dissipation, complicates the control of the sample position. A quantitative

characterization and eventual control of the butterfly loops would enhance the use of

electrostrictive ceramics in practical applications.

In this paper a technique to characterize butterfly loops of electrostrictive

materials is described. In addition to the phase information, the technique is used to

obtain the magnitude and sign of the internal voltage. For this study, the measurements

were performed on RAINBOW (Reduced and INternally Biased Oxide Wafers) actuators

based on lead lanthanum zirconate titanate (PLZT) ceramics. Rainbow actuators are

novel devices capable of orders of magnitude larger displacements compared to the bulk

ceramics for the same level of driving field, and as such are well suited for this study 4-8.

In a number of ferroelectrics, including both soft and hard PZT ceramics, the

hysteresis loop can be shifted along the field axis by a number of methods. The shift is

characterized by an internal bias field, Ein t. The internal bias field usually is caused by

reorientable dipolar defects 9-]2. Defects are assumed to gradually orient in a direction

corresponding to the minimization of the free energy. With benders such as Rainbows it

is more appropriate to specify internal voltages rather than internal fields since the

electric field inside a bender is not uniform.



II. MODELING APPROACH

A. Displacement Model

The relationship between the polarization and strain for the electrostrictive

materials is often anhysteretic at low frequencyl3,14, implying that the electrostrictive

coefficient Q is real. In contrast, the strain lags the driving field resulting in the butterfly

loops, implying that the electrostrictive coefficient M is complex. The difference in

response for the polarization and field-controlled strain is due to the phase lag between

the polarization and driving field. For an applied sinusoidal field of E = Eosin(rot ) the

polarization response is15:

p = Posin(oX+8) = f(o3)Eosin(cot+8 ). (2)

(Note: In Eq. (2) and all further equations, the indices are

omitted for clarity, but the tensor properties are implied.)

The modeling technique is applicable only when Po is linearly proportional to E o,

i.e., when the factor f(o_) is not a function of E o, only of frequency. The dielectric phase

angle, 8, is related to the imaginary and real parts, e"(o_) and e'(_0), respectively, of the

dielectric constant, E, by:

tan(8) : E"(to)/E'(co). (3)

Assuming that there is no phase shift between the polarization and strain we can

now rewrite Eq. (lb) as

s = Q(f(ro)Eosin(ox+8)) 2 (4)

indicating that with respect to the electric field, both the polarization and strain

experience hysteresis defined by the same phase shift constant, 8. For ferroelectric

materials, e'(o_) is orders of magnitude greater than Co, in which case the relationship f(co)

= e'(o_)/cos(8) is applicable 15. Eq. (4) in the final form becomes:

s = Q(e'(co)Eosin(oa+8)/cos(8)) 2 = psin(cot+8) 2 (5)

where _ = Q(e'(m)Eo/cos(8)) 2 is a constant at a particular frequency.

For a Rainbow actuator the observed displacement is a function of the effective

electrostrictive coefficients (primarily M12, which may be affected by internal stress

compared to the stress-free constant), and the sample geometry. For the periodic electric

field, E = Eosin(_), the displacement lags the driving field, and since the electrostrictive

coefficient M12 is negative, the simplest expression for the displacement consistent with

Eq. (5) is



D = -Do(sin(cot+e))2. (6)

A non-zero displacement phase angle, 0, is required for hysteresis to occur when

the displacement is plotted versus the electric field. In general, O is a function of three

variables:

0 = f(/5,0p,0¢) (7)

where/5 is the dielectric phase angle defined in Eq. (3), 0p is the phase angle between the

polarization and displacement, and 0 e is the phase delay introduced by the measurement

circuitry. The functional relationship between the three components is unknown.

Nevertheless, should 0 be approximately equal to/5, it would imply that the displacement

phase angle, 0, is controlled by the dielectric phase angle,/5.

In order for the range of data from the model to correspond to the range of the

experimental data, Eq. (6) was modified as follows:

D = Do(1-(sin(c0t+0)) 2) (8)

which results in the range Of displacements being between zero and the maximum

experimental displacement, D o. In the case of Rainbow samples, the interpretation of the

displacement curves requires taking into account the effect of an internal voltage which

shifts the butterfly loop. To incorporate the effect of the internal voltage, Eq. (8) is

modified to include additional terms, A and B:

D -- Do-(Asin(cot+O)+B)2. (9)

This expression implies that the internal bias field, Ein t, and the displacement

phase angle, 0, throughout the oxide portion of the sample were treated as uniform. The

internal bias voltage is then equal to the product of the internal field and the oxide layer

thickness.

Expanding Eq. (9) further by making 0 and B voltage-dependent did not result in

an appreciable improvement in fit to the experimental data and made solution

convergence more problematic. Therefore, Eq. (9) was used to fit the experimental

displacement data.

Since the maximum displacement, D O, is known from the experimental data,

thereare only threeconstants,A, 0, and B, which have to be determined for the model.

The Marquart-Levenberg algorithm was used to find the values that give the best fit

between the model and the dataover a complete period.

3



Since B/A and Vint/Vapl both define the relative shift of the butterfly loop, the

internal voltage was calculated from the expression:

Vin = 03/A)Vapl. (10)

It is preferable to characterize Rainbow devices in terms of internal voltages rather than

internal fields became (1) the electric field in a Rainbow device may not be uniform due

to the nonuniform stress distribution, and (2) the oxide and reduced layer thicknesses

may not be known precisely.

B. Polarization Model

To model the polarization loops the applied voltage waveform was first fit with

the Marquart-Levenberg algorithm using the expression:

Vap I = V 1sin(tot+01) (11)

where 01 is determined by the trigger level of the oscilloscope. The voltage proportional

to the polarization was fit to the expression:

Vp = V2sin(ot+02). (12)

The dielectric phase angle, 8, between the polarization and driving voltage is calculated

using the following expression:

8 = 02-oi. 03)

III. EXPERIMENTAL PROCEDURE

Rainbow ceramics chosen for this study had the composition PLZT 8.4/70/30

(with respect to the ABO3 perovskite structure, 8.4 mol. % La replaces Pb on the A site,

and 70 mol. % Zr and 30 mol. % Ti occupy the B site). Samples of this composition

exhibit the electrostrictive strain response.

Rainbow sample preparation and properties were reported previously 4-s. PLZT

8.4/70/30 samples were hot-pressed at 1200 °C for 6 hours at 14 MPa. A Rainbow was

produced from the lapped wafer by placing the wafer on a graphite block and introducing

the assembly into a preheated furnace. Reduction times at 975 °C were 90 and 120

minutes for samples 1 and 2, respectively. The reduction conditions were such that the

samples were reduced on one side only. The epoxy silver electrodes used for

measurements were cured at 200 °C. Both Rainbow samples had diameters of 32 mm

and thicknesses of 0.51 mm. A diagram of a Rainbow sample is shown in Fig. 1.

4



The principle or" operation o( a Ralnbow actuator is similar to that or a

unimorph 16. The reduced layer does not change its dimensions when electrical field is

present and is a good electrical conductor. The oxide layer retains PLZT properties and

changes its dimensions when electric field is across it. To satisfy boundary conditions at

the interface between the oxide and reduced layers, the sample flexes when voltage is
applied.

Field-induced displacements were determined using an LVDT (Linear Variable

Differential Transformer)-based apparatus at room temperature. Unless otherwise

specified, the displacements were measured by placing the extension rod at the center of

the sample's oxide surface. The displacement and applied voltage data were collected by
a computer for data analysis.

Dielectric measurements were performed using a Sawer and Tower circuit. Data

was collected using an HP 54504A digital storage oscilloscope, then transferred to a

computer where hysteresis loops were modeled. In addition, an EG&G 5302 lock-in

amplifier was used to measure the phase difference between the applied voltage and the
voltage across the reference capacitor.

IV. RESULTS AND DISCUSSION

A. Modeling

Butterfly loops with no internal bias voltage were calculated for displacement

phase angles, 0, of 0 °, -10 °, and -20 ° using Eq. (9), and the results are shown in Fig. 2.

Two consequences of increased phase angle magnitude are: (1) a more pronounced

hysteresis corresponding to a greater energy dissipation, and (2) a depression of the zero

field point. However, the phase angle has no effect on predicted displacement

magnitude. The sample with a zero phase angle displays a one-to-one correspondence

between the driving voltage and the displacement.

Three butterfly loops with the internal bias voltage magnitudes, IVint I , of 0 %,

10 %, and 30 % of the applied voltage magnitude, Ivapll, were calculated and are

shown in Fig. 3. For each of the loops the displacement phase angle, 0, was kept constant

at -10 °. The displacement loops were normalized to make the maximum displacement,

Do, equal to one for the loop with zero internal bias voltage. The results of increasing

internal voltage include an increase in the magnitude of the displacement and a shift of

the loop horizontally. The increasing range of displacements with increasing internal

voltage is a consequence of the quadratic dependence of the displacement on a total local

field which includes both the applied and internal fields. This effect could be significant

in samples with large internal voltage. For example, in the case of IVintl = 30 % of [
rapt I, Do is increased by 69 %. In contrast, for piezoelectric materials the internal field

would have no effect on the magnitude of displacement unless the internal field is

sufficiently large to introduce a nonlinear response.

5



B. Comparison of Model to Measurements

The comparisons between the experimental butterfly loops and the model are

shown in Fig. 4. The samples were tested with +_ 200 V, 1 Hz sinusoidal waveforms.

Excellent agreement between the experimental and modeling loops over the complete

range of measurements for both samples supports the validity of the model. The internal

voltages, -4.6 V and -5.5 V, and the phase angles, -12.1 ° and -11.8 °, for samples 1 and

2, respectively, are quite similar. Although the internal voltages are small compared to

the driving voltage, they increase the displacement by 4.6 % and 5.5 % for samples 1 and

2, respectively, compared to the hypothetical samples with no internal voltage. The signs

of the internal voltages are negative, which is consistent with the easy switching direction

being towards the oxide-reduced layer interface.

Both samples were well aged. To test the effects of aging on the displacement

characteristics, sample 1 was thermally depoled and remeasured within 1 hour. The

results were similar to the well-aged sample: an internal bias voltage of-6.1 V and a

displacement phase angle of-11.9 ° were obtained from the model, indicating that the

butterfly loop parameters do not change appreciably with aging.

The curvature of a Rainbow and its internal stresses vary as a function of distance

from the center of the sample, with the largest tensile stress on the oxide surface near the

edges of the sample predicted by Finite Element Modeling and characterized by x-ray

diffraction 6. Stress-optic measurements gave direct evidence of nonuniform stresses near

the sample edges in the bulk of the oxide layer 17. Since internal stresses are likely to

contribute to internal voltages in Rainbow samples, the butterfly loops were measured for

samples 1 and 2, with the data obtained along the sample surface starting at the center

and moving toward the edge. Good agreement between the experimental data and the

model was obtained for all of the loops.

Experimental field-induced displacements, D, and modeled displacement phase

angles, 0, and internal bias voltages, Vint, are shown for both samples in Fig. 5 (0 and

Vin t are negative values, but graphed as positive). The maximum displacement was

observed at the center of the samples, reducing gradually towards edge. For sample 1 the

internal voltage showed a gradual reduction from the center towards the edge of the

sample. For sample 2 the internal voltage was fairly constant across the sample. The

phase angles were fairly constant for both samples except near the edge of sample 2.

The frequency dependence of the butterfly loop parameters for sample 1 is shown

in Fig. 6. The largest reduction of displacement amplitude occurred between 1 and 10

Hz. Interestingly, the internal voltages also showed a large drop off in the same

frequency range. Of the 21% reduction in displacement from 1 to 10 Hz, approximately

6 % was due to the change in the internal voltage. It is likely that the intemal voltage is

nonuniform throughout the oxide layer. With increasing frequency, the regions in which

polarization reorientation with applied field are hardest to achieve will not switch,

causing the reduction in both the displacement magnitude and observed internal voltage.



Thecalculatedphaseanglewas in a narrow range for all the measurements except at the

highest frequency. An increase in the phase angle at 10 Hz is partly due to increased

dielectric losses with increasing frequency and to the phase angle introduced by the

LVDT's signal conditioner circuitry at higher frequencies.

The displacement versus polarization curve at 1 Hz is shown in Fig. 7. Unlike the

displacement versus applied voltage, the displacement versus polarization has a one-to-

one dependence. A plot of displacement versus polarization squared resulted in a straight

line implying the electrostrictive response - a behavior similar to that of bulk PLZT

9.5/65/35 samplesl3,14. Since the displacement follows the polarization without the

phase delay, the contribution of the experimental setup to the measurement of the phase

angle at 1 Hz and below is negligible. However, at 10 Hz a slight hysteresis was
observed.

Because the displacement follows the polarization with essentially no phase delay

at frequencies of 1 Hz and below, the displacement phase delay is likely to have the

origin in the dielectric phase delay between the driving electric field and the induced

polarization in the same frequency range. The 0p and 0 e contributions to 0 are negligible

and 0 -- _i. To quantify the relationship between the dielectric and the displacement

phase angles, the dielectric and displacement measurements were performed one after

the other using identical experimental conditions. The dielectric phase angle, /5, was

determined from the phase lock measurement and the polarization loop curve fitting at 1

Hz. The observed and modeled polarization hysteresis loops are in good agreement (Fig.

8). A comparison of the dielectric and displacement phase angles in Table 1 indicates

that they are almost identical, supporting the hypotheses that the electrostrictive losses

are controlled by the dielectric response of the material.

V. CONCLUSIONS

A technique for modeling butterfly loops for electrostrictive ceramics was

presented. The displacement phase angle and internal voltages were determined from the

curve fitting of the experimental displacement data to a characteristic function. The

technique was successfully applied to PLZT 8.4/70/30 Rainbow ceramics. The internal

voltages cause the asymmetry of the butterfly loops and increase the magnitude of the

displacements. An observed reduction of displacement with increasing frequency is

partly accounted for by a reduction of the internal voltages.

The phase angles and intemal voltages did not change appreciably with the

location on the sample at which the measurements were taken. The dielectric and

displacement phase angles were found from modeling to be almost identical implying a

close tie between the dielectric and the displacement responses. Absence of hysteresis in

the dependence of displacement on polarization further supports the primary role of the

dielectric response in determining the displacement phase angle of the electrostrictive
Rainbow devices.
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Table 1. Dielectric and displacement phase angles measured at 1 Hz

Type of Phase Delay Measurement Phase Angle

dielectric lock-in amplifier - 12.2 °

dielectric Sawer-Tower and curve fitting -12.2 °

displacement LVDT and curve fitting -12.4 °



Figure 1. Diagram of Rainbow sample
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Characterization of Rainbow Ceramics for Active Vibration Control

and Noise Suppression Applications

Abstract: With a combined merit of high stress-sensing response and high field-induced

displacement, Rainbow ceramics appear very promising for such newer applications as active

vibration control and noise suppression in advanced mechanical systems. The properties

pertinent to this aspect of application, including the frequency dependence of field-induced

displacement, electromechanical coupling, and stress-sensing response, were investigated using

samples made from PLZT compositions. A method for mounting a Rainbow on a mechanical

structure was developed that allows the Rainbow to deliver maximum stresses and achieve

optimal stress sensing at the same time. The stress-sensing and stress-generating characteristics

of Rainbows mounted on an aluminum cantilevered beam were determined and the results were

compared with those obtained using normal PLZT elements on the same structure. Aging

behavior in the presence of bias stresses, which is associated with this mounting technique, was

measured and evaluated. Some results of finite element analysis and theoretical calculation are

also presented.

1. Introduction

Rainbow ceramics have been considered for a wide range of actuation applications due to

their high field-induced displacement and moderate load-bearing capability [1]. More recent

studies revealed that this new device possesses good stress-sensing characteristics as well when



operatedin the dome mode [2]. The combined merit of high stress-sensing response and large

field-induced displacement renders the Rainbow ceramic a very promising candidate for newer

applications such as active vibration control and noise suppression in a variety of advanced

mechanical structures and systems. This report presents results of an investigation on the

properties of Rainbow ceramics which are pertinent to the applications in this respect. The

properties investigated include the frequency dependence of field-induced displacement,

electromechanical coupling and stress-sensing response. Some results of finite element analysis

and theoretical calculation are given in conjunction with the experimental data. A special

approach for mounting a Rainbow on a mechanical structure is introduced for which the

stress-sensing and stress-generating characteristics were determined and compared with those

obtained from normal ceramic elements of the same dimensions. Finally, the aging behavior of

Rainbow properties associated with this mounting technique is discussed. It is hoped that the

information given in this report can provide useful guidelines to further exploration of the

Rainbow ceramic for active vibration control and noise suppression in the future. These results

should also be of value for use of Rainbow ceramics in other fields of application.

2. Sample Preparation

A number of different compositions from the PLZT system were chosen to prepare the

ceramic wafers for the production of the Rainbow samples. These compositions, located in the

vicinity of the morphotropic phase boundary separating the tetragonal and rhombohedral phases,

include PLZT 1.0/53/47(La/Zr/Ti), 5.5/56/44, and 5.5/59/41. Fabrication procedures for the

ceramic wafers and Rainbow samples are available elsewhere [3]. The Rainbow samples had

dimensions ranging from 15-25 mils in thickness and 0.5-1.30 inches in diameter. Different



valuesof the thickness ratio, which is defined as the ratio of the reduced layer thickness to the

total thickness, were achieved by using different reduction times during processing. As usual,

the Rainbow samples are identified in terms of the composition and processing conditions of the

original, unreduced ceramic wafers. For instance, RB1053 represents a Rainbow made from a

PLZT 1.0/53/47 ceramic.

3. Results and Discussion

3.1 Frequency Dependence and Electromechanical Coupling

Figure 1 shows the dependence of the field-induced displacement on the frequency of the

driving electric field determined using an optical interferometery system made by Zygo Inc. A

sample with its concave side facing downwards was placed on a flat metal plate and secured

around its edge to the plate with three small pieces of Scotch tape that formed a triangle pattern.

A sinusoidal unipolar voltage was applied to the sample. The magnitude of the applied voltage,

which was in the same direction as the poling field, was between 20 and 75 V which corresponds

to an electric field of 1.5 to 2.5 kV/cm depending on the thickness ratio of the sample (note that

all the samples shown in Figure 1 had the same total thickness). Usually the displacement signal

followed a sinusoidal trace analogous to the input voltage, except in the vicinity of a resonance

where overtones of significant magnitude were observed in addition to the fundamental

frequency. The peak-to-peak values in the displacement were recorded at each frequency

increment.

As is indicated in Figure 1, all of the Rainbow samples exhibited a progressive decrease

in the displacement with increasing frequency. Marked variations in the neighborhood of 900 Hz

were caused by the mechanical resonance of the samples in this frequency region. It was found



that thedisplacementdrop dependedconsiderablyon sample's thickness radio. The percentage

decrease from 0.1 Hz to 100 Hz was estimated to be 13%, 38% and 36% for RB5556-51,

RB5556-43 and RB5556-59, respectively, whose thickness ratios are indicated in the figure.

The reduction of the displacement with increasing frequency was considered to be likely

associated with the interaction of the internal stress with domain switching under applied field.

With increase of the driving field frequency, the domains responsible for the stress-enhanced

effect in the Rainbow ceramic [4] are expected to undergo enhanced relaxations originating from

the internal friction due to the presence of the high internal stress, and eventually become locked.

As a results, the field-induced displacement is reduced progressively. This argument appears to

be well justified by the fact that a Rainbow behaves more like a conventional unimorph in terms

of its field-induced displacement characteristics when the frequency is increased. Figure 1 also

compares the Rainbow samples with a unimorph and a Cerambow. The unimorph sample was

made by bonding a PLZT ceramic wafer to a fully reduced wafer at room temperature with a

commercial epoxy. The Cerambow was produced on the basis of a stress-biasing technique

analogous to the Rainbow technology, but the internal stress level in a Cerambow is considerably

lower [5]. It can be seen that the displacement from the unimorph was nearly frequency

independent throughout the frequency range studied. Similarly, there was only an approximately

8% drop in the displacement from 0.1 Hz to 100 Hz for the Cerambow sample, as compared to a

38% drop in the Rainbow of the same thickness ratio. This observation is consistent with the

aforementioned stress-related mechanism for the frequency dependence of the Rainbow ceramic,

because the internal stress in the unimorph is negligible and that in the Cerambow is much lower.

It is worthwhile mentioning that in a study on Rainbows by Elissalde et al [6], it was found that

in the regions near the reduced/unreduced layer interface the PLZT properties were slightly



altereddue to changesin microstructureresulting from the chemicalreductionprocess. These

regions may play an increasingly important role in affecting the frequency-dependent

characteristicsastheunreducedlayerbecomesverythin.

The changeof the effective couplingcoefficient and mechanicalquality factor for the

domemode with thicknessratio was given in Figures2 and 3. The data in the figures were

calculatedaccordingto equations k,,/i = Ocp2-f2)t/2/fp and Q,,, = R/(o)L) whose parameters were

determined by curve-fitting the impedance spectrum of the sample using a standard equivalent

circuit. A typical example of such curvefit is displayed in Figure 4. As is shown in Figure 2, the

electromechanical coupling exhibited a maximum at a thickness ratio around 0.4. The

mechanical Q,, in Figure 3 dropped drastically with increasing thickness ratio after peaking at the

thickness ratio of approximately 0.2. This drastic reduction in Q,, suggests that additional

relaxation mechanisms may have been introduced as the thickness of the unreduced layer

diminishes.

The change of the effective coupling coefficient with thickness ratio was evaluated via

the finite element method (FEM). For verification purposes the same relationship was also

determined through analytical calculations. Due to unavailability of analytical equations for the

disk-shaped bender structure the verification was performed based on strip-shaped structures.

The modeling results obtained are given in Figure 5. It is surprising to note that the analytical

models developed by different authors, although they all are able to produce consistent values for

the field-induced displacements, provide totally different solutions to the dependence of the

coupling coefficient on thickness ratio. Among these models Smits' model does not even give a

correct answer for the fact the a finite value exists at the thickness ratio of unity, instead of



obviouslya zerovalue. Ontheotherhand,Ikeda'sresultsnicelymatchthe FEM curve (FEM-1)

over the entire range of the thickness ratio. As is also shown in Figure 5, a disk-shaped structure

(FEM-2) possesses a higher electromechanical coupling than does the strip-shaped structure

(FEM-1) for a given thickness ratio.

The above modeling analyses have not taken into account the influence of either the

internal stress or the domed configuration. When the effect of the curvature was included, the

coupling coefficient values at lower thickness ratios were found to be improved, as is shown in

Figure 5 (FEM-3). This implies that a curved structure is capable of conversing more energy

than a fiat structure. By comparing Figure 5 with Figure 2, it can be seen that the experimental

values on the coupling coefficient are significantly lower than the theoretical predictions,

particularly at higher thickness ratios (more than 50% lower in most cases). This difference

between experiment and modeling was considered to be another indication of the frequency

dependence of Rainbow properties since the coupling coefficient data were determined at the

resonant frequencies. In other words, the difference between experiment and modeling may

improve under steady state conditions.

Electromechanical coupling as a function of sample's diameter was determined for both

the dome mode and the radial mode. A sample was measured starting at the largest diameter

and then sanded down to a smaller diameter value for the next measurement. The results of

these measurements are given in Figure 6 for two Rainbow samples of different compositions.

As can be seen, the value for the radial mode is nearly independent of diameter from 1.3 inches

down to 0.35 inches. As for the dome mode, there seems to be an optimum value at a diameter

somewhere between 0.8 and 1.0. The corresponding relationship of the resonant frequency

6



versusdiameterfor thedomemodeis displayedin Figure7. As anticipated,thefrequencyvalues

decreasedinverselywith diameter.

3.2 Stress-sensing and stress-generating characteristics of Rainbow on mechanical structure

Conventional approaches for mounting a piezoelectric element to a structure to be

controlled, such as surface mount and embedding, are not applicable to the Rainbow ceramic

because of the domed configuration. When used on Rainbow ceramics, these approaches would

be very inefficient in terms of energy transfer between the Rainbow and the structure. Deriving a

suitable mounting method is, therefore, crucial for use of these devices for active vibration

control and noise suppression. In this work, a special means was developed which is able to

effectively deliver mechanical energy to the structure and, at the same time, sense the stresses in

the structure. A schematic of this mounting technique with a Rainbow on a cantilevered

structure is demonstrated in Figure 8. A Rainbow with a hole drilled through in the center is

bolt held to the structure under prestress. When a voltage is applied across the Rainbow, the

change of the curvature results in transfer of mechanical energy from the Rainbow to the

structure through the variation of the bending moment and stretching force at the Rainbow's

edge. This process is similar to the case of a piezoelectric element on a structure with a surface

mount, as is also shown in the figure. Conversely, any vibrations of the structure cause changes

in the Rainbow curvature which transform into electric signals via the piezoelectric effect of the

Rainbow. In the following discussions, the Rainbow samples, and the piezoelectric elements

used for comparison, were located at the positions ¼ and/or ½ measured from the free end of an

aluminum cantilevered beam having dimensions of 120×25×1.5 mm (lengthxwidth×thickness).
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Thepiezoelectricelementshad the samecomposition(PLZT 5.5/56/44)anddimensionsasthe

Rainbowsampleswhichwere22.4×0.5mm (diameter×thickness).

Figure9 illustratesthestress-sensingcharacteristicsof aRainbowon theaforementioned

structuredriven by anotherRainbownearbywhich wasoperatedunder threedifferent levelsof

appliedvoltage. Thestress-sensingRainbowin this casewassituatedat theposition_Afrom the

freeend. Outputsignalswerecollecteddirectly from the sampleelectrodesandfed to a lock-in

amplifier controlledby a computer. The resonantcharacteristicsof the structurecanbe clearly

seenfrom Figure9 alongwith thevariationof the signalamplitudewith frequency. It is evident

that a higherdriving voltageproduceda higherlevel of stresswhich wasapproximatelylinearly

proportionalto theappliedvoltage.

The stress-sensingRainbow sample in the above measurementwas replaced by a

piezoelectricelementand similar measurementswere carried out. The results obtained are

displayed in Figure 10 together with the correspondingcurve appearingin Figure 9 for

comparison. As can be seen,the two curvesexhibited very similar characteristics,with the

Rainbowsamplepossessingaslightly highersensingsensitivityin the low-frequencyregions.

Likewise, the Rainbow sampleused for the stressgenerationwas substitutedby a

piezoelectricelement. In this way the stress-generatingcharacteristicsof the Rainbowand the

piezoelectricelementcouldbe compared.Themeasuredresultsarepresentedin Figure 11. As

indicated,the resonantbehaviorof the structurewas slightly alteredafter replacementof the

Rainbow sampleby the piezoelectricelement,but overall, the two curves look very similar.

Basedon the signalamplitude,it seemsthat the Rainbowsamplewasableto generatea higher

level of stressascomparedto the piezoelectricelement. However,it shouldbementionedthat



the electric field on the Rainbow was also higher because the same amplitude of voltage was

employed for the Rainbow and the piezoelectric element.

3.3 Rainbow Properties under Static Bias Stress

As indicated previously, this mounting technique involves prestressing of the Rainbow on

the structure. It is desirable, as also for other similar applications, to have some basic

understanding of any effects of persistent external stresses on the Rainbow properties. In this

study, selected Rainbow samples were subjected to static external stresses of various magnitudes

by placing weights normal to the major surface of the samples. Changes in the properties such as

dome height, field-induced displacement, coupling coefficient, capacitance and piezoelectric

constant were recorded as a function of time. In one case two strip-shaped samples with identical

dimensions and thickness ratio were tested under different levels of stress. In the other case

disk-shaped samples having different thickness ratios were investigated under the same stress

level.

Figure 12 displays the change of the dome height (curvature) with time for the samples

indicated. RB5556-1 and RB5556-2 were strip-type samples of 20 mm long, 5 mm wide and 0.5

mm thick with a thickness ratio of approximately 0.3. Samples RBI053-1 and RB1053-2 had a

circular geometry of 31.8 mm diameter and 0.675 mm thick, and their thickness ratios were

approximately 0.3 and 0.6, respectively. As seen in Figure 12, the dome height of all the

samples underwent a drastic reduction within 10 days after the stress was applied. Thereafter,

the changes became leveled off for RB5556-1 and RB5556-2. However, for the RB1053

samples the decrease of the dome height progressed continuously, though less drastically, which

is probably attributed to a much larger applied stress and a ferroelastically softer structure as
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comparedto the caseof theRB5556samples. ThesampleRB1053-1wasalmostflattenedout

afterapproximately100days.

The changeof the field-induceddisplacementunderbias stresspresentsquite different

characteristicsamong these samples,which is shown in Figure 13. For RB1053-2 the

displacementfirst increasedandthendroppedprogressively. On the contrary,the displacement

of RB1053-1 decreasedat the beginning but slightly recoveredafter about 70 days. The

variations of the displacementsfor the RB5556 sampleswere relatively gradual. These

characteristicsof the field-induced displacementunder external stressare believed to be a

combined consequenceof a number of influences whose details remain to be understood.

However,the behaviorof RB1053-1seemsto be explainablefrom the curvaturechangeunder

stress. Two processes with opposite consequences are considered to occur as the curvature is

reduced. On one hand, the stress-enhanced effect for the field-induced displacement diminishes

with reducing dome curvature. On the other hand, the reduction in the dome curvature results in

a decrease of the geometrical stiffness and consequently an increase in the displacement. As the

sample becomes fiat under the influence of stress, the effect of the stiffness reduction becomes

dominant. As a result, an increase of the displacement is expected to occur. It is also recognized

that intrinsic degradation of the properties under stress, for example due to internal microcracks,

would eventually play a significant role.

The change of the coupling coefficient for the dome mode is displayed in Figure 14. The

coupling coefficient values for the RB5556 samples were not significantly affected by external

stressing. As for the RB 1053 samples, the coupling coefficient showed a trend of increase with

time. Such a result appears to be also associated with the reduction in the curvature, because it

was found experimentally that a circular sample with smaller curvature corresponds to a higher
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coupling coefficientvalue. This, however,is contradictiveto the finite element analyses given

previously, which, again, could be ascribed to the frequency-dependent characteristics of the

Rainbow samples.

Figures 15-16 show the piezoelectric coefficient d33 and capacitance as a function of time,

respectively. Statistically both the parameters increased with time, but at various degrees.

From the above results, it was recognized that the change of the Rainbow properties

under external bias stress is very complex. It is dependent on the extrinsic factors such as the

geometry and thickness ratio of the sample as well as the intrinsic properties like the composition

and microstructure. Further work is needed for a better understanding of this subject.

4. Summary and Conclusions

The properties of Rainbow ceramics relevant to vibration control and noise suppression

applications, such as the frequency dependence of field-induced displacement and

electromechanical coupling, were investigated using samples made from PLZT compositions. It

was found that the field-induced displacement decreased progressively with increasing

frequency. The extent of the decrease depends strongly on the thickness ratio of the sample,

among other factors. The coupling coefficient of the dome mode was considerably lower than

the theoretical predictions for all samples having different dimensions and thickness ratios. This

may be attributed to the frequency-dependent characteristics of Rainbow ceramics, because the

experimental values were determined at the resonant frequencies, which could be quite different

than the values at lower frequencies.

A method for mounting a Rainbow on a mechanical structure was developed. The results

for Rainbows mounted on an aluminum cantilevered beam show that their stress-sensing and
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stress-generatingcharacteristicsaresimilar to or betterthan thoseobtainedusing normalPLZT

elementson the samestructure. The agingbehaviorof Rainbowpropertiesin the presenceof

bias stresses,which is associatedwith this mountingtechnique,wasevaluated. Generally,the

changesof the Rainbowpropertieswith time underexternalstressesarequite complex,asthey

arestronglydependentonboth intrinsic andextrinsicinfluences.Thetrendof propertyvariation

with time is usuallydifferent from propertyto property,andthe magnitudeof the variationat a

giventime periodis alsovery differentfor differentproperties.
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Stress Effects in Cerambow Actuators

L Abstract

The purpose of this report is to present the most recent findings concerning the

Cerambow(CERAMic Biased Oxide Wafer) actuator at Clemson University. X-ray

diffraction patterns containing the (200) and (002) peaks from selected thickness ratio

Cerambow samples were obtained to better understand the state of stress in the ceramic

layer. Frequency dependent displacement behavior of the Cerambow was studied from

0.1 to 400 Hz using a laser interferometer. Cerambow samples having a 0.3 thickness

ratio were seen to exhibit a more pronounced stress-enhanced effect compared to those

with a 0.5 thickness ratio based on the x-ray diffraction data. The displacement of the

Cerambows used in this investigation decreased as frequency was increased up to

approximately 100 Hz. From 200-400 Hz the displacement increased and was considered

to be caused by the existence of a resonant dome mode at these frequencies.

II. Introduction

In the field of electronic ceramics, there has been an ongoing effort to produce

actuation devices from ferroelectric materials. 1 Ferroelectric ceramic actuators have been

considered to be more advantageous than other actuator types for many reasons including

low cost, high induced stress, compact size and quick response. The capabilities of bulk

ferroelectric (piezoelectric and electrostrictive) materials has been vigorously studied. The

greatest displacements achieved by bulk materials have been determined to be insufficient



for manypracticalapplications,whichincludelinearmotors,pumps,speakers,variable

focuslenses,andmedicaldetectiondevices.For thisreason,strain-amplifyingtechniques

havebeenstudiedanddeveloped,andseriousimprovementto themaximumdisplacement

achievablebyferroelectricceramicshasbeenachieved.2'3

One of the most promising revelations in the area of ceramic actuation devices is

the Rainbow (Reduced And Internally Biased Oxide Wafer) actuator. A Rainbow is

formed by chemically reducing one side of a high lead containing ceramic wafer at an

elevated temperature. Upon cooling to room temperature, stress is imparted to the oxide

ceramic layer by the reduced layer resulting in a domed or saddle shaped structure.

Rainbow ceramics have shown to yield ultra-high displacements when subjected to an

electric field when compared to any other bulk ceramic actuators: It has been proven that

a high internal stress field is responsible for the performance of Rainbows)

The Cerambow actuator is based on the same stress-bending technology as the

Rainbow. Bonding a high thermal expansion substrate to a PLZT ceramic wafer at a

moderate temperature forms a Cerambow. The Cerambows for this investigation were

made by solder bonding electroded piezoelectric or electrosrtictive ceramics to brass

substrates with a thermal expansion coefficient approximately four times greater than the

ceramic. While the Cerambow is basically a unimorph bender, the Rainbow is a

monomorph consisting of a piezoelectrically active oxide layer and an inactive reduced

layer.

It is known that of the two types of domain reorientation, 180 ° and non-180 °,

which take place in ferroelectric ceramics upon the application of an electric field, only

non-180 ° rotations are responsible for dimensional changes in the material. By this theory,



increasing the population of non-180 ° domains in a ferroelectric ceramic should lead to an

increase in the displacement achievable by the material. In terms of unit cell geometry,

180 ° domains would be oriented parallel to each other, and non-180 ° domains at an angle

to each other. In tetragonal phase ceramics, this angle is 90 ° and in rhombohedral phase

ceramics it can be either 71 ° or 109 °. Figure 1 shows a diagram of the orientation for

180 ° and 90 ° domains. Domains which reside in the regions of compressive stresses are

more likely to undergo 180 ° switching under the application of an electric field normal to

the stress, while those in a region of tensile stresses are more likely to undergo a non-180 °

reorientation.

The high internal stress fields in the Rainbow were characterized by a compressive

stress at the intermediate layer between the reduced and oxide layers which decreases

toward the top of the oxide layer. For certain thickness ratio Rainbows, a region of tensile

stress was discovered near the surface that was maximized at a thickness ratio of-0.3. 6 A

diagram of the relationship between the (200)/(002) intensity ratio and the domain

structure is located in Figure 2. The intensities of the (200) and (002) x-ray diffraction

peaks are determined by the amount of domains that are oriented parallel and

perpendicular to the sample surface respectively.

This investigation aims to show the presence of stress-enhanced mechanisms in the

Cerambow which contribute to the displacement as in the Rainbow. A study of the

frequency-dependent displacement properties of Cerambows is also included.



HI. Experimental Procedure

1. Sample Preparation

Conventional mixed oxide techniques were used to prepare PLZT 1.0/53/47,

5.5/56/44, and 9.0/65/35 powders according to the B-site vacancy formula for the PLZT

system. Raw materials were batched and ball mixed for 30 minutes in distilled water.

After drying, the powders were calcined at 925°C for two hours and then milled with

distilled water in a high alumina containing ball mill for one hour. Slugs were pressed

from the dried material and sintered in an oxygen atmosphere at 1250°C for four hours.

A diamond saw was used to slice the sintered samples into disks, which were

ground to a diameter of 31.75 mm and lapped to the appropriate thickness. Silver

electrodes were applied to each side of the ceramic disk and dried at 200°C for 20 minutes

and then fired at 550°C A non-electroded ring approximately 1 mm in width was left

around the circumference of one side of the wafer to prevent any excess solder from

bonding to it during Cerambowing.

A disk was cut to the appropriate diameter from a sheet of brass foil having a

thickness of 0.127 mm. The ceramic and brass disks were placed in a sonicator filled with

acetone for one minute to insure a clean surface prior to bonding. The brass disk was

placed on a piece of sheet metal on a hot plate preheated to approximately 250°C. The

brass was allowed to heat up to maximum expansion, and was tinned with 60/40 Sn/Pb

solder. The ceramic disk was placed on top the solder with the non-electroded side faced

up, and a preheated weight was lowered onto the device to hold it together while it was

removed from the hot plate.



Pressurewas applied normal to the surfaceof the Cerambow by hand for

approximately 20 seconds after removal from the hot plate, and the it was allowed to cool

to room temperature. The edge of the Cerambow was sanded with 400-grit sandpaper to

remove any excess solder and decrease the chance of electrical breakdown during testing.

The samples were then poled at twice the coercive field for the respective composition for

one minute.

The samples that were used to obtain x-ray diffraction data were prepared slightly

different than a regular Cerambow. Before electroding, these disks were placed in a box

furnace at 700°C for one hour to relieve any stress in the ceramic generated due to slicing,

grinding, and lapping. Only one side of the ceramic was coated with silver electrode

before bonding. An aluminum electrode was evaporated onto the top surface of each

sample that was to be used to evaluate the change in the (200)/(002) peak intensity ratio

as a function of electric field. Silicon oil was spread onto each Cerambow before a

voltage was applied for insulation purposes. The voltage was applied to the samples

through pieces of aluminum foil which were taped to their electrodes.

2. Measurements

X-ray diffraction patterns of the (200) and (002) peak intensities were obtained

with a Scintag 2000 XDS x-ray diffractometer using Ni-filtered copper Kot radiation.

Scans of each sample were taken at a rate of 1 degree per minute between 42 and 46

degrees of 20. The (200) and (002) peaks were fitted using a Gaussian fitting function.

Frequency versus displacements was recorded for selected Cerambow samples

from 0.1-400 Hz. All displacement measurements were taken using a 200 volt unipolar

voltage. A Zygo ZMI 1000 laser interferometer interfaced with a computer was used to



obtainthesemeasurements.Figure3 containsadiagramof the interferometer setup.

A laser beam comprised of two orthogonally polarized beams with different

frequencies was generated by the laser head and aimed at the optical probe. When the

incoming beam entered the optical probe it was divided into two perpendicular beams with

different polarizations. One beam was deflected immediately into the detector, while the

other was sent to the sample. The second beam deflected off of a piece of reflective

silicon tape located on the sample and back into the detector. Movement of the sample

resulted in an optical path change between the two beams. The detector converted the

optical interference into an electrical signal that was sent to the computer. The peak to

peak displacement shown on the computer was reported as the displacement at that

frequency.

IV. Results and Discussion

Figures 4 and 5 are plots of the (200)/(002) peak intensity ratios of selected

1/53/47 and 5.5/56/44 samples as a function of electric field. The 1.0/53/47 and 5.5/56/44

samples having a 0.3 thickness ratio in both graphs showed a much greater slope than the

other samples, 1.5 and 0.6 times respectively. The sample having a 0.0 thickness ratio is

bulk PLZT and in Figure 1 it is shown to have a similar (200)/(002) peak intensity ratio

change as a function of electric field, as the sample having a 0.5 thickness ratio.

As stated before, domains that undergo non-180 ° reorientation with the

application of a poling voltage give an additional contribution to displacement.

Piezoelectric ceramic materials which are placed under tension are known to possess



preferredorientationin the direction of stress. The application of an electric field

perpindicular to the direction of this preferred orientation would result in an increase in the

amount of 90 ° rotations, and hence displacement, compared to a stress-free ceramic. For

this reason, greater changes in the (200)/(002) peak intensity ratio with electric field are

expected from Cerambows that have the largest region of tensile stress. Due to thier

much larger slope, it is believed that the 0.3 thickness ratio samples in Figures 4 and 5

benefit from some type of stress enhanced effect. These results agree with previous finite

element models, which underestimated the performance of Cerambows having a thickness

ratio below 0.4 up to 78 %.7 This underestimation was considered to be due to stress

enhanced mechanisms that were not incorporated into the model.

Figures 6 and 7 are plots of the displacement of Cerambows having different

thickness ratios as a function of frequency. A decrease in the displacement was observed

from frequencies from 0.1 to 100 Hz. The PLZT 1/53/47 samples showed about the same

amount of decrease, 30 and 23 %, for the 0.3 and 0.5 thickness ratio samples respectively.

The 9.0/65/35 samples showed a similar response, decreasing approximately 15 % each.

Not only was the frequency-dependent displacement of Ceramobws thought to be

due to stress-enhanced effects, nonlinear and hysteresis effects ,which were known to be

more pronounced at higher fields, were thought to be responsible for their behavior also.

All samples were exposed to the same voltage for these measurements, so the 0.5

thickness ratio samples were exposed to a higher field. Therefore, any nonlinear effect

would be much more pronounced for the 0.5 thickness ratio samples.

As frequency was increased, some domains that lie in regions of tensile stress

which are necessary for large displacements may not have enough time to switch.



Becauseanynonlinearor hysteresiseffectshouldhavebeenlessevidentin the0.3

thicknessratio Cerambowsandtheydecreasedapproximatelythe sameamountasthe

thinnersamples,the frequencydatamayalsoshowthepresenceof a stress-enhanced

effectin thesesamples.Thereforeboththex-raydiffractionandfrequencydependent

displacementdatashowthat astressenhancedeffectmayplaya role in thebehaviorof 0.3

thicknessratio Cerambowactuators.

V. Summary

Cerambows having a 0.3 thickness ratio experienced a much greater change in

their (200/(002) peak intensity ratios as a function of electric field compared to the other

samples tested in this study. Based on this fact, Cerambow devices possessing a 0.3

thickness ratio were found to benefit from a stress enhanced effect.

Cerambows with thickness ratios of 0.3 and 0.44 showed similar frequency

dependent displacement characteristics from 0.1 to 400 Hz. From 0.1 to 100 Hz, the

displacement of the Cerambows decreased up to 30 % depending on thickness ratio and

composition. The samples having a 0.3 thickness ratio were believed to exhibit a stress

enhanced effect because they consistently showed approximately the same amount of

decrease as the 0.44 thickness ratio samples, although they were less influenced by

nonlinear effects. Increasing the frequency further resulted in an increase in displacement

up to 400 Hz. This behavior was explained by the existence of a resonant dome mode at

these frequencies.
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Voltage-Induced Displacement Properties of Cerambow Actuators

Bret W. Barron, Guang Li, and Gene H. Haertling

Gilbert C. Robinson Department of Ceramic and Materials Engineering

Clemson University

Clemson, SC, 29634-0907

Abstract A new type of ceramic actuator has been developed called the CERAMBOW

(CERAMic Biased Oxide Wafer). In this technology, bonding two layers with

mismatched thermal expansion coefficients results in a structure that is a purposely stress-

biased unimorph actuator. The voltage-induced displacement properties of Cerambows

having varying PLZT 1/53/47, 5.5/56/44, and 9/65/35 layer thicknesses were evaluated

and compared to Rainbow actuators. The temperature dependent displacement properties

of Cerambows were studied from 25 to 150°C. Cerambow actuators with dimensions of

31.75 mm x 0.5 mm (diameter x thickness) achieved displacements as high as 135 _tm at

450 volts. In addition, the displacements of 1/53/47 and 5.5/56/44 Cerambows showed

good temperature stability up to 110°C

Introduction Over the last ten years, there has been an ongoing effort to produce

piezoelectric and electrostrictive actuator configurations which produce strains that meet

the requirements of today's applications which include linear motors, pumps, speakers,

• .. 12
deformable mirrors, and mlcroposltloners. ' Presently, the most common types of

composite actuator configurations are unimorph and bimorph benders in addition to

flextensional devices. It is known that each of these technologies has limitations in

regard to size, weight, maximum displacement, or load beating capability. 3



The Cerambowwasdevelopedin theshadowof oneof themostpromisingstrain-

amplificationtechniquesto this dayknownastheRainbow(ReducedAnd INternally

BiasedOxideWafer)actuator.A Rainbowactuatorisproducedby chemicallyreducing

onesideof ahigh lead-containingceramicwaferatanelevatedtemperature,resultingin a

domeor saddleshaped2-layercompositestructure.Themechanismsresponsiblefor the

uniquegeometryof theRainbowhavebeenpreviouslyreported.4 The stresseswhich are

impartedto theceramicvia theRainbowprocesscreatea stateof tensiontowardthetop,

andcompressiontowardthebottomof theunreduced,oxide layer. Theultra-high

displacementsachievableby Rainbowceramicscanbeattributedto this stress-biased

condition.

TheCerambowis consideredarelativeof theRainbowbecausetheyareboth

basedonsimilar stress-bendingtechnologies.However,temperaturesof fabricationare

muchlower for theCerambow,andthebondingmechanismis significantlydifferent; i.e.

a discrete,physicalbondfor theCerambowandan intragranular,chemicalbondfor the

Rainbow. Bondingahigh expansionsubstrateto anelectrodedpiezoelectricdisk at a

moderatetemperatureformsaCerambow.Theresultingdomedor saddle-shaped

configurationin theCerambowis dueentirelyto thedifferencein thermalexpansion

coefficientsbetweentheceramicandsubstratelayer.

While theRainbowis amonomorphconsistingof apiezoelectricallyactiveoxide

andaninactivereducedlayer,theCerambowis essentiallyatypical unimorph. In both

devices,the inactivelayer(consistingof thesubstrate,bondinglayer,andbottom

electrodein theCerambow)laterallyconstrainstheactivepiezoelectricor electrostrictive

layer. Applying anelectricfield to eitheractuatorcausesadimensionalchangein the



lateraldirectionby theactivelayer. To accommodatethis strain,thetotalcomposite

(activeandinactive layers)mustbend,resultingin abucklingmotionperpendicularto the

radial directionof thedevice. This axialdisplacementis maximizedat thedomecenter.

In thepasttherehavebeenmanyattemptsto quantifyandalleviatethestresses

producedwhenmetalsandceramicsarejoined. In Cerambowtechnology,thestresses

generatedduringbondingandsubsequentcool downarebelievedto beresponsiblefor

theaboveaverageperformanceof thedevice. It is believedthatthestressgradients

presentin theceramiclayerof aCerambow,like theRainbow,enableit to produce

greaterdisplacementsata givenvoltagethantheaverageunimorphbender.This effect

hasbeenstudiedin theRainbowandwasidentifiedasa stress-enhancedeffect.5

Thispaperreportson theprocessby whichCerambowactuatorsarefabricated

andpresentsa characterizationof their voltage-induceddisplacementpropertiesunder

variousconditions. In addition,adirectcomparisonbetweenCerambowsandRainbows

wasobtainedfor the 1/53/47composition.

Experimental Procedure

(1) Sample Preparation Many material properties are optimized for electromechanical

transducer applications at the morphotropic phase boundary (MPB) between the

ferroelectric rhombohedral and tetragonal phases of the PLZT system. 6 The ferroelectric

PLZT compositions used in this investigation were chosen because they lie on or near the

MPB. Conventional mixed-oxide techniques were used to prepare PLZT 1/53/47

(La/Zr/Ti), 5.5/56/44, and 9/65/35 powders. Raw materials were batched according to the

traditional B-site vacancy formula for the PLZT system. The batched oxide powders were



thoroughlymixed in aball mill usinga 1:1weightratio of powder to distilled water.

After drying, the powder was placed in an alumina crucible and calcined at 925°C for two

hours. Milling of the calcined powder was carried out using a high alumina ball mill and

distilled water.

PLZT slugs were dry pressed using a pressure of approximately 20 MPa and

sintered for 4 hours at 1250°C in an oxygen atmosphere. The sintered slugs were then

sliced with a diamond saw, ground to a diameter of 31.75 mm and lapped to the

appropriate thickness, which ranged from 0.18 - 0.43 mm for each actuator in this study.

The disks were coated with silver electrodes (DuPont 7095) on each side, dried at 200°C

for 20 minutes and then fired at 550°C for 30 minutes. A non-electroded ring

approximately 1 mm wide was left around the outer circumference of one side of the

wafer to prevent any excess solder from bonding to the top electrode.

Cerambows could be fabricated from a wide array of materials. In this study, a

brass substrate having a thermal expansion coefficient approximately four times greater

than that of the ceramic was used. A disk was cut to the appropriate diameter from a

sheet of brass foil having a thickness of 0.127 mm. Both the brass disk and the

electroded ceramic sample were placed in a sonicator in acetone for one minute to insure

a clean surface prior to bonding. The brass disk was placed on a piece of sheet metal on a

hot plate preheated to approximately 250°C. The brass was allowed to heat up to

maximum expansion, and was tinned using 60/40 Sn/Pb solder. This solder composition

was chosen because it possesses the highest joint strength of the tin/lead solders (43.8

MPa).



TheelectrodedPLZTwaferwasthenplacedon topof thesolderwith the

unelectroded-ringsidefacedup. A preheatedsteelweightwas loweredonto thedeviceto

hold it togetherwhile it wasremovedfrom thehotplate. Pressurewasappliednormal to

thesurfaceof theCerambowby handfor approximately20 secondsafterremovalfrom

thehotplate,andthesetupwasallowedto coolto roomtemperature.Theedgeof the

Cerambowwassandedwith 400-gritsandpaperto removeanyexcesssolderanddecrease

thechanceof electricalbreakdownduringtesting.

For Rainbowceramics,theratioof thereducedlayerthicknessto thetotal

thicknessof thedeviceis mostimportantfor maximizingfield-induceddisplacement.

Thisparameteris definedasthethicknessratio. In addition,to properlycompare

CerambowandRainbowactuatorsthethicknessratiomustbekeptconstantbetween

them. In theCerambow,thecombinedthicknessof thesubstrate,solder,andbottom

electrodewasconsideredto beequivalentto thereducedlayerof theRainbow. The

Cerambowsamplesmadefor this investigationweregenerallyfoundto havean inactive

layerthicknessof 0.18mm. ThereforeeachRainbowsamplewasreducedfor theproper

time andtemperatureto obtaina0.18mm reducedlayer. Consequently,thePLZT

1/53/47disksrequiredareductiontemperatureof 950°Cfor 35minutes. Sincetheedges

of aRainbowtendedto bemorereducedthantheremainderof thestructure,samples

weregroundto theappropriatediameterafterprocessing,thuseliminatingtheregionof

nonuniformreduction. Silver epoxyelectrodes(DuPont5504)werethenappliedto both

sidesandcuredat 200°Cfor 30minutes.



(2) MeasurementsThedensityof eachfiredPLZT slugwasdeterminedby the

immersionmethod.All densitieswerefoundto begreaterthan95 % of theoretical for

their respective compositions. The grain sizes of PLZT 1/53/47 and 5.5/56/44 were

determined by the linear intercept method and were 7 _m and 3 pm, respectively. Each

piezoelectric actuator sample was poled for one minute using an electric field greater than

twice the coercive field. This poling field was determined to be 16 kV/cm for 1/53/47

and 25 kV/cm for 5.5/56/44. Three samples were fabricated for each testing condition and

the average displacements were reported.

A linear variable differential transformer (LVDT) setup was used to record the

voltage-induced displacements of each actuator. The displacement as a function of

voltage up to 600 volts was recorded for each sample. The same samples were also tested

under a point loading varying fi'om 10 to 1000 grams applied at the dome center under an

applied voltage of 450 volts. In order to measure the temperature dependency of the

displacement in the Cerambow, the samples were submerged in mineral oil during

heating on a hot plate. Displacements were recorded for increasing and decreasing

temperature. A diagram of this setup is given in Figure 1.

Results and Discussion: The voltage-induced displacements for a series of Cerambow

5.5/56/44 samples with varying thickness are shown in Figure 2. All samples exhibited

nearly linear behavior as a function of voltage. The maximum displacement observed at

450 volts was approximately 175 pm, and was achieved by the thinnest Cerambow. A

comparison between Cerambows and Rainbows having a thickness ratio of 0.32 is



displayedin Figure3. For all 1/53/47Cerambowsamples,displacementsbetween50-75

%of theRainbowswereachieved.A fundamentalstructuraldifferencebetweenboth

actuatorswasmostlikely responsiblefor thisbehavior. In theRainbow,the interfacial

layerbetweenthereducedandoxide layersis extremelythin andessentiallynonexistent,

whereasthe Cerambowpossessesabondinglayerthatis approximately50_tmin

thickness.It hasbeenreportedthatin thebimorphandunimorphstructures,increasing

thethicknessof thebondinglayerleadsto adecreasein theachievabledisplacementat a

givenfield.7

In RainbowsandCerambowswith thinneroxide layers,sometimesthestress

inducedby theinactivelayerduringcoolingcanactto bendthestructureinto a shape

similar to thatof asaddleasopposedto themorecommondomeconfiguration. From

this investigationit wasseenthatmostsampleshavingatotal thicknesslessthan

approximately0.45mm adoptedthesaddleconfiguration,while thosewith atotal

thicknessgreaterthan0.45mm adoptedthedomeconfiguration.Actuatorsoperatingin

thesaddlemodewereknownto givegreaterdisplacementsthanthoseoperatingin the

domemode. Thepoint mustalsobemadethatthinneractuatorswereexposedto a higher

electricfield, whichwould leadto greaterdisplacements.Thedisplacementsof thetwo

thinnestsamplesin Figure2 werebelievedto beslightly greaterthantheremaining

samplesdueto acombinationof thesefactors.

Figure4 showsagraphof thechangein displacementat 450volts for Cerambows

with varyingthicknessesunderapoint loadingappliedat thedomecenter.As the

loadingincreased,thethicker samplesshowedamoreslightdecreasein displacement



than the thinner samples for each composition. The underlying reason for this behavior

was that thicker samples were known to possess greater stiffness, allowing them to

maintain more of their curvature under the point loading.

Cerambow samples gave more similar displacements compared to the Rainbow

under point loaded conditions. The data from samples having a 0.5 thickness ratio is

reported in Figure 5. When these measurements were recorded, each sample was placed

on top of a metal washer. It is known that Rainbow samples can give displacements only

as large as their dome heights, meaning they cannot reverse their curvature to

accommodate an increasing point load or electric field without failure. Cerambows have

shown the ability to reverse their curvature without breaking, most likely due to their

thicker, more ductile bonding layer, which explains why they showed displacements

more comparable to the Rainbow under these conditions.

Figure 6 contains a plot of the displacements of Cerambows with a thickness ratio

of 0.29 as a function of temperature. As the temperature was increased, the displacement

gradually increased up to approximately 100-115 °C. Past this temperature range, a

significant decrease in the displacement was observed, becoming more pronounced up to

the maximum temperature. Upon cooling the samples, a similar trend was observed.

The ferroelectric compositions used in this study were known to have

piezoelectric properties similar to those of PZT-5. Berlincourt, et al, reported a plot of

the change of the d31 coefficient versus temperature. 8 A rise in temperature is

accompanied by an increase in the d31 coefficient for PZT-5A up to 115 °C and beyond.

It was assumed that the ferroelectric materials used to make the Cerambows in this

showed similar behavior. The increase in this material property directly influences the



performanceof Cerambowsbecause,asstatedpreviously,the lateraldimensionalchange

perpendicularto thedirectionof theappliedelectricfield is responsiblefor thebending

motion in theseactuators.This factorwasconsideredto be themajor contributorto the

behaviorof theferroelectricCerambowactuatorsup to approximately115°C.

From 115-150°C,thedisplacementof thepiezoelectricCerambowsdecreased

significantly. At thesetemperatures,therapidsofteningof thesolderbondinglayer

allowedthemetalandceramiclayersto beginto moverelativeto eachother. When

voltagewasapplied,thedeformationin thepiezoelectriclayerwasnot entirely

transformedintobendingmotion, leadingto a decreasein theobserveddisplacement.As

temperaturewasincreasedfurther,thebondinglayerbecamemoreductile,transforming

evenlessof thepiezoelectricstrainsintobending.

As for theelectrostrictive9/65/35Cerambows,thedisplacementat 450Volts

decreasedasthetemperaturewasincreasedfrom roomtemperatureto 150°C. This type

of behaviorwasexpectedfrom thismaterialbecauseit wasknownto haveaCurie

temperaturethat lies atapproximatelyroomtemperature.As thetemperatureof this

materialwasincreased,theamountof obtainablepolarizationwithin it decreases,hence

thenetdisplacementdecreases.Likewise,thesofteningof thebondinglayersurely

contributedto thedecreasein performance.

Summary TheCerambowhasprovento beaviablestrain-amplificationtechniquefor

motorpiezoelectricapplications,producingdisplacementsbetween50-75% of Rainbow

sampleshavingthesamedimensions.Therangeof samplesmadefor this investigation

all showedfairly linearvoltagedependenceup to 600volts. Cerambowsmadefrom



1/53/47PLZT producedstrainswhichwereequivalentto thoseof Rainbowsunderpoint

loadedconditions.

Thetemperaturedependentdisplacementcapabilitiesof PLZT 1/53/47and

5.5/56/44Cerambowactuatorswasevaluatedandfoundto be fairly constantup to

temperaturesof approximately100°C.Pastthis temperaturerange,therewasasharp

decreasein thedisplacement.Thesotteningof thebondinglayerwasconsideredto be

themajorcontributingfactorto thisbehavior.The9/65/35samplesshowedadecreasein

their displacementasa functionof temperature,whichwasexpecteddueto thenatureof

electrostrictionundertheseconditions.
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Figure Titles

Fig. 1. Schematic diagram of the experimental setup used to measure the temerature-

dependent displacements of Cerambows.

Fig. 2. Comparison of the voltage-induced displacements of Cerambows with varying

oxide layer thickness.

Fig. 3. Voltage-induced displacement of Cerambow and Rainbow samples having a 0.32

thickness ratio.

Fig. 4. Displacement at 450 volts of 9/65/35 Cerambow samples under a point loading at

the dome center.

Fig. 5. Cerambow/Rainbow voltage-induced displacement comparison under an

increasing point loading.

Temperature-dependent displacement properties of Cerambow actuators having a

0.29 thickness ratio.

Fig.6.
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Fig. 1. Schematic diagram of the experimental setup used to measure the

temperature-dependent displacements of Cerambows.
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Operational Fatigue in Rainbow and Cerambow Ceramics

Gene Haertling

I. Introduction

Ferroelectric and piezoelectric ceramics have long been known to be limited in their areas

of application because of their low tensile strength, their minimal mechanical displacement during

operation and their fatigue characteristics (including creep and aging) leading to diminished

operation or outright failure. Through ingenious engineering designs over the years, these

limiting factors have largely been circumvented via special techniques such as (1) pre-loading the

tranducers with compressional wraps or mountings, (2) forming special compositions or

ceramic/matrix composites and (3) fabricating composite compression-type flextensional

structures; however, this has usually been accomplished at the expense of additional size

(volume), weight and sensitivity.

When used as high displacement actuators as in unimorphs, bimorphs, monolithic

Rainbows (Reduced And INternally Biased Oxide Wafer) or Cerambows (CERamic Biased Oxide

Wafer), such materials suffer from the same limitations mentioned above and means must be

found to alleviate the problems. As the newest of the bender technologies, Rainbows extend the

displacement and force range of present-day bender actuators several-fold, and one could

consider the Rainbow as a heavy-duty, super bender with special, low frequency (dome, saddle)

bending modes in addition to the usual higher frequency piezoelectric extensional modes.

Applications for the Rainbow benders include linear motors, pumps, switches, loud speakers,

sounders, light deflectors, variable focus mirrors, anti-vibration elements, hydrophones,

hydroprojectors, actuators, smart transducers and sensors.

Although various material and stress-related aspects of the Rainbow and Cerambow

structures have now been explored somewhat thoroughly, the fatigue characteristics of the basic

material, and Rainbow and Cerambow actuators fabricated from it, has only received limited

attention even though it is recognized to be one of the most important considerations for the



overallsuccess of the technology. The first work in this area has been reported by Dausch 1 and

Dausch and Wise 2 where they pointed out that (1) polarization fatigue in piezoelectric Rainbows

resulted in a 33 to 53% loss over 108 switching cycles while electrostrictor Rainbows fatigued

only 8%, (2) fatigue was believed to be caused by degradation at the interface between the oxide

and the chemically reduced layers, (3) the piezoelectric, soft composition, PZT-5A, and

electrostrictive PLZT 9/65/35 were found to retain approximately 65% of their initial

displacement after 10 7 cycles with a 300 g load and (4) the super-soft, piezoelectric compositions,

PZT-5H and PLZT 7/65/35 fatigued completely after 10 7 cycles. They concluded that PZT-5A

and PLZT 9/65/35 would be viable candidates for Rainbow electromechanical actuators.

The objective of this brief study was to test the fatigue and life characteristics of several

selected Rainbow and Cerambow actuators fabricated from piezoelectric (ferroelectric) and

electrostrictive compositions, thus adding some additional input data to the phenomenon of

fatigue in these materials.

II. Experimental

The compositions selected for this test included PLZT 1/53/47 (piezoelectric), PLZT

6/56/44 (piezoelectric), PLZT 8.2/70/30 (electrostrictive), Aura C3900 (piezoelectric) and

Motorola 3199 (piezoelectric). Two actuators of each of these compositions were fabricated and

tested as dome-mode Rainbows with the exception of the Motorola 3199 which was fabbed as a

dome-mode Cerambow. The Aura ceramics were obtained from Aura as Rainbows in two

different sizes; i.e., 1.25 inch dia. x 0.15 inch thick and 2.0 inch dia. x 0.30 inch thick. Both of

these sizes were tested, whereas the size of all of the other Rainbow actuators was 1.25 inch dia.

x 0.020 inch thick. Since the Motorola elements were obtained as 1.25 inch dia. x 0.010 inch

thick parts, a Cerambow was fabricated from one such element using solder bonding to a 0.005

inch thick brass foil. The total number of actuators under study was eleven.

Testing was very simple in that it involved a group of eleven individual mechanical dial

indicator stands, each holding an actuator; and all of the actuators were connected electrically in



parallelto a tingle dc power supply operated from 0 and +450 volts at a frequency of one

Hertz.

This was done so that the expense of a separate power supply for each setup was not required.

Since all of the samples were electrically in parallel, when one of the actuators failed (electrically

or mechanically) it was removed from the group so that the remaining samples could continue

testing. The very low frequency of one Hertz was selected in order to include any low frequency

component of fatigue or creep which might affect the operation or lifetime of the actuators. This

was done, knowing that the highest mechanical displacements are achieved in these bending

actuators at the lowest frequencies.

III. Results and Discussion

Continuous testing of the actuators was carried out over the period of approximately eight

months. At a frequency of one Hertz, this amounted to 2.1 x 107 cycles. The results of this test

are given in Figure 1 for one sample of each of the different types of actuators. It should be

noted that by driving all of the actuators in parallel with the same power supply (and hence,

voltage), they were actually being operated at different levels of electric field. These levels are

indicated on the figure for each of the actuator types as the last value of the identifier legend (in

kV/cm). Outright failures are indicated by the lightning bolt symbol.

It should first be noted in Figure 1 that three out of the six actuators failed by either

mechanical cracking or electrical breakdown - the root cause is not identifiable since a crack can

often lead to an electrical breakdown and failure (but need not necessarily do so) - while a pure

electrical breakdown will surely lead to a failure. Secondly, it can be seen that the three actuators

with the highest displacements were the ones to fail, but all survived >Ix 10 7 cycles ; and thirdly,

two out of three of these actuators were those which were electrically driven the hardest, i.e., at

30 and 18 kV/cm. It was also apparent from the results that the Cerambow and Rainbows

showed similar behavior in fatigue and failure. Photographs of the three failures are shown in

Figure 2.
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3900R and PLZT 8.2/70/30.



Of the remainingthreeactuatorsthat did not fail, the Aura 3900 and PLZT 6/56/44

fatiguecharacteristicswereconsiderablybetterthanPLZT 1/53/47whichdisplayeda behaviorof

continuousdegradationthroughoutthe testingperiod. This behavioris believedto be due, in

part,to the largergrainsizeof the 1/53/47(10 um)comparedto that of all of the othermaterials

(5 - 6 um), leadingto microcracking.At theendof thetestperiod(2.1x 107cycles),thesethree

actuatorshad displacementsof 74%, 68% and20% of their original values,respectively. It is

notedthat the valuesof 74% and68% areonly slight higherthan,but essentiallyin agreement

with, the65%valueobtainedbyDauschandWise2after 10 7 cycles with a 300 g load.

IV. Conclusions

Results from this study indicate that the Rainbow and Cerambow high displacement,

bending actuators to have definite fatigue and lifetimes depending upon (1) the amount of

displacement generated, (2) how hard they are driven electrically and (3) the microstructure (grain

size) of the ceramic material. Minimum lifetimes determined from this study were on the order of

10 7 cycles at near dc frequencies (1 Hz); however, other work has shown them to withstand

greater than 5 x 108 cycles at 50 Hz. Obviously, more work needs to be done to fully

characterize the degradation behavior of these types of actuators. Some contributing factors to

fatigue which have not been studied but merit consideration are (1) frequency, (2) pulse shape

(sine, square, etc.), (3) pulse polarity (unipolar or bipolar), (4) temperature, (5) external stress

generation and (6) internal stress bias dependence.

.
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Temperature Dependent Characteristics of Cerambow Actuators

Bret W. Barron, Guang Li, and G. H. Haertling
The Gilbert C. Robinson Department of Ceramic Engineering

Clemson University
Clemson, SC 29634-0907

Abstract-A new type of piezoelectric actuator has been
developed called the Cerambow. Cerambow technology is based
on a thermal contraction mismatch between two bonded layers
which results in a stress-biased structure. For this
investigation, brass substrates were solder-bonded to PLZT
1/53/47 and 5.5/56/44 disks at an elevated temperature. During
cooling, stresses are imparted to the ceramic by the metal and a
domed structure results. The displacements of Cerambows
were recorded as a function of temperature under both loaded
and non-loaded conditions. The results showed a fairly
constant displacement up to approximately 100oc, followed by
a rapid decrease to the maximum temperature of 160°C. After
thermal cycling, the displacements were found to be close to the
initial displacement values. Prior to and after thermal cycling,
the mechanical quality factor and the effective coupling
coefficient of the dome mode for each sample were calculated.

1. INTRODUCTION

In recent years there has been a considerable amount of
work done in tile area of incorporating piezoelectric
materials into structures which can produce strains that are

greater than the bulk materials, t'2 One such actuator
configuration is the newly developed Cerambow (CERAMic
Biased Oxide Wafer).

The Cerambow actuator was developed in the shadow of
one of the most promising developments in tile field of
strain-amplified actuators known as the Rainbow. In the
Rainbow, it was found that the unique geometry was a result
of the reduction of volume in the reduced layer, the unit cell

volume change at the paraelectric-ferroelectric phase
transformation, and the thermal expansion coefficient
mismatch between the reduced and unreduced layers)

The Cerambow was based on the same stress-bending
technology as the Rainbow, but the temperatures of
fabrication were much lower, and the bonding mechanism

was inherently different. The Cerambow relies solely on the
thermal expansion mismatch between the substrate and
ceramic layers to create a domed structure. The stress
gradients which are present in the ceramic layer after
cooling enable the Cerambow to produce greater
displacements at a given voltage than the average unimorph
bender. In the Rainbow this effect was described as the

stress-enhanced effect. 4 Preliminary finite element modeling

results suggest that the Cerambow may also benefit from
this phenomenon. While the Rainbow is a monomorph

consisting of piezoelectrically active oxide and inactive
reduced layers, the Cerambow is a typical unimorph.

The inactive layer in the Cerambow structure laterally
constrains the active layer. When an electric field is applied
to the device, the contraction in the lateral direction by the
active layer results in a bending motion which is maximized
at the dome center. The room temperature properties have
shown the Cerambow to be a viable strain-enhancing

technique, but an understanding of the temperature
dependence of their displacement properties is essential for
consideration as actuation devices.

II. EXPERIMENTALPROCEDURES

A. Sample Preparation

Conventional mixed oxide techniques were used to

prepare PLZT 1/53/47 and 5.5/56/44 powders for this
investigation. Raw materials were batched according to the
traditional B-site vacancy formula for the PLZT system and
were mixed for 30 minutes in a ball mill. The mixed powder

was placed in an alumina crucible and calcined using a ramp
rate of 5°C/min. to 925°C for 2 hours. Milling was done for

one hour at a 1:1 weight ratio of powder to distilled water.
Slugs were dry pressed and sintered for 4 hours at 1250°C

in an oxygen atmosphere. The slugs were then cut using a
diamond saw and lapped to a diameter of 3.175 cm and
thickness of 0.0432 cm. Silver epoxy electrodes (DuPont
7095) were applied to each side of the ceramic disk and
dried at 200°C for 20 minutes and then fired at 550°C for 30

minutes. A non-electroded ring about 1 mm in width was
left around the outer radius of one side of the wafer to

prevent any excess solder from bonding to it during
Cerambowing.

B. Cerambow Fabrication

A brass disk was then cut to the appropriate diameter from

a sheet of foil having a thickness of 0.0127 cm. Both the
electroded ceramic and the brass disk were placed in acetone
and cleaned in a sonicator. The brass disk was placed on a

piece of sheet metal located on a hot plate preheated to
approximately 250°C. The brass was allowed to heat up to
maximum expansion, and 60/40 Sn/Pb solder was uniformly

applied to it. An electroded PLZT wafer was placed on top



of the solder with the fully electroded side down. A

preheated steel weight was used to hold the device together
while it was removed from the heat. Pressure was applied by

hand for approximately 20 seconds after removal from the

hot plate, and then the setup was allowed to cool to room

temperature. The edge of each Cerambow was sanded to

remove any excess solder and decrease the chance of
electrical breakdown during testing.

C. Afeasurements

The density of each sample was determined by the

immersion method after sintering. All densities of the

samples used in this experiment were > 95% of the

theoretical. The grain sizes of the PLZT 1/53/47 and

5.5/56/44 prepared for this investigation were determined on

a Ziess optical microscope by the linear intercept method and

were found to be 7 I.tm and 3 I.tm, respectively. The samples

were poled after Cerambowing at a field approximately twice
the coercive field, 16 kWcm for 1/53/47 and 25 kWcm for

5.5/56/44, for one minute.

The equivalent circuit and the effective coupling

coefficient parameters for the dome mode were obtained

using a Hewlett-Packard 4194A Impedence / Gain-Phase

Analyzer. The quality factor, Qm, and the effective
electromechanical coupling coefficient, lqfr. were then

calculated by the following expressions:

I
u

(L t let) 2
Qm - (1)

R_

if2 _f2)

I/
(2)

Where Lm, C_, and Rt were the equivalent inductance,

resistance, and series capacitance of the equivalent circuit for

each sample. In Equation 2, f, and fp were the series and

parallel resonance frequencies of the resonant mode

respectively.

All strain measurements were done using a Lucas-
Schaevitz LVDT (Linear Variable Differential Transformer).

The dome center of each sample was marked with a scribe to

ensure greater consistency in the recorded data. Before and

after temperature cycling, the dome height of each sample

was recorded. The sample was immersed in mineral oil in a

metal pan and placed onto an alumina refractory disk on a

hot plate. Because a negative pressure would develop

underneath the domed structure of the Cerambow during

testing, each sample was placed onto three metal strips

arranged in a triangular pattern. Without the metal spacers,

the sample would stick to the bottom of the metal pan after

several applications of the electric field, resulting in no net
motion.

The probe used to measure the displacements was built so

that the part which was encompassed by the LVDT was

separated from the metal tip by an insulating ceramic layer.

This configuration allowed the application of the voltage to
be carried out through the tip of the probe to the sample. A

voltmeter was used to make sure that 450 volts was applied

to the sample at each temperature. The temperature was
varied from 25°C to 160°C and back to 25°C at a rate of

approximately 0.5 °C/rain. The temperature was recorded by

a Type K thermocouple placed into the mineral oil directly

above the sample attached to a voltmeter. Lip until 130°C,

the displacement at 450 volts was recorded every 15°C.

After that point, the amount of displacement was decreasing

at a much faster rate and the measurements were taken every

5°C. Three samples were tested under each condition and

the data were averaged to construct the appropriate

diagrams. The experimental setup is shown in Figure 1.

III. RESULTS AND DISCUSSION

The mechanical quality factor and effective coupling

coefficient of the Cerambows used in this investigation are

located in Table 1. The subscripts were meant to indicate

when the measurements were obtained during the testing

cycle. The subscripts b, a, and al, signify measurements

taken before thermal treatment, after thermal treatment, and

after thermal treatment under a point loading of 200 grams

respectively.
The mechanical quality factor under both testing

conditions showed a slight decrease after thermal cycling. It

has previously been seen that prolonged exposure to high
temperatures results in a poor bond between the metal and

ceramic layers. This may be responsible for the decrease in

this property that was observed. The samples which were

tested under point-loaded testing conditions showed a

slightly less decrease than the non-loaded specimens. This

Mineral Od
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Fig. 1. Experimental setup used to calculate the bending displacement of
Cerambow actuators as a function of temperature.



TABLE 1

MECHANICAL QUALITY FACTOR AND EFFECTIVE COUPLING COEFFICIENT FOR

CERAMBOW ACTUATORS BEFORE AND AFTER THERMAL CYCLING

Property

q.
Q,I

keffb

5.5/56/44

k eft a

1.0/53/47
67 87

40 60

54 84

.174.164

keff' .186 .180

.183 .186

could be due to the fact that the pressure being exerted onto
the sample aided in maintaining the bond between the
ceramic and metal layers during thermal cycling.

The effective coupling coefficient of Cerambows showed
an increase after thermal cycling under loaded conditions.
This may be related to the fact that the dome height was seen
to decrease by 20 - 30 % after testing in these samples. It
has been seen in Rainbow ceramics that samples with more
curvature exhibit smaller effective coupling coefficients.
The geometry change of the Cerambows during testing could
have led to the change in this property of the device.

Figure 2 shows a plot of the displacement as a function of
temperature under non-loaded conditions. As the

temperature was increased, the displacement gradually
increased until 100-115°C. After this temperature range, the

displacement began to decrease at an accelerated rate until
the maximum temperature was reached. Tile same behavior
was observed upon cooling the samples back to room

temperature.
The compositions used in this investigation were known to

possess piezoelectric properties similar to those of PZT-5. A
plot of the change of the d3t coefficient versus temperature
was reported by Berlincourt et. al. 5 This diagram showed
that a rise in temperature is accompanied by an increase in
the d_t coefficient for PZT-5A. It was assumed that the

PLZT materials used had the same variation of their dal

coefficients with temperature. The increase in this material
property directly influences the performance of Cerambows
because, as stated previously, the lateral contraction
perpendicular to the direction of the applied electric field is
responsible for the bending motion in these actuators. This
factor was considered to be the major contributor to the
increase in displacement up to temperatures of

approximately 115°C.
Above 115°C, the d31 coefficient does not increase as

quickly and other factors begin to dominate the behavior of
the samples. The most obvious reason for the decrease in the
displacement at high temperatures may have been the fact
that the solder bonding layer was rapidly softening. As this
softening occurred, the metal and the ceramic layers were
able to move relative to each other as opposed to with each
other. When the voltage was applied, the deformation of the
piezoelectric layer was not entirely transferred to the bending
motion because of the overly ductile bonding layer, leading
to a decrease in the achieved displacement. Furthermore, as

the temperature was continually increased, the bonding layer
became more ductile, transferring even less of the

piezoelectric strains into bending.
Figure 3 shows a diagram of the temperature-dependent

displacement of Cerambow actuators bearing a point load of
200 grams at the dome center. These curves show a similar
response to the temperature variation as in Figure 2. In
these curves the displacement decrease is much more
drastic, and the maximum displacement was found to lie at a
lower temperature, - 85°C. It was believed that the force of
the point loading created nonuniform stress conditions
within the ceramic layer which may have led to the more
rapid decrease in displacement at a lower temperature. In
addition, the amount of shear stress at the interface may have

been increased by the application of the point loading. This
shear stress may have also played a role in the behavior
observed under these testing conditions.
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Fig. 2. Displacement as a function of temperature for Ccrambow actuators
under non-loaded conditions.
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V. SUMMARY

The temperature dependent displacement capabilities of

Cerambow actuators were studied under both loaded and

non-loaded conditions. Under both testing conditions, the

displacements were found to be fairly temperature
independent up to temperatures of approximately 100°C.

Past this temperature range, there was a sharp decrease in

the observed displacement up to the maximum temperature
of 160°C. The softening of the bonding layer was considered

to be responsible for this behavior. In addition, temperature

cycling of Cerambow actuators did not seem to decrease their

room temperature displacement capabilities. The mechanical

quality factor was found to decrease more readily in samples
that were tested under non-loaded conditions. This was

believed to be due to a lack of pressure that was used to

fabricate the original structure. The effective coupling
coefficient of the dome mode was seen to increase in the

loaded samples to a greater extent, and was attributed to a

change in the dome curvature after testing.

V.REFERENCES

[1] Gene H. Haertling, "Chemically reduced PLZT ceramics

for ultra-high displacement actuators," Ferroelectrics, vol.

154, pp. 101-106, 1994.

[2] Y. Sugawara, K. Onitsuka, S. Yoshikawa, Q. Xu, R. E.
Newnham, and K. Uchino, "Metal-Ceramic composite

actuators," J. Am Ceram. Soc., vol. 75, pp. 996-998, April
1992.

[3] Guang Li, "Influence of internal stress on the

electromechanical properties of PLZT stress-biased

(Rainbow) ceramic actuators," Ph.D. Thesis, Gilbert C.

Robinson Department of Ceramic Engineering, Clemson

University, 1995.
[4] Guang Li, "Stress-enhanced displacements in PLZT

Rainbow actuators," to be published, 1996.

[5] D. A. Berlincourt, D. R. Curran, and H. Jaffe,

"Piezoelectric and piezomagnetic materials and their

function in transducers," Physical Acoustics, p. 206, 1964.



/i,, /

Ytrroelectrics, !996. Vol, 188, pp. 223-236

Reprints available directly from the publisher
Photocopying permitted by license only

C 1996 OPA (Overseas Publishers Association)
Amsterdam B V. Published in The Netherlands

under license by Gordon 1rod Breach Science
Publishers SA

Printed in Malaysia

FABRICATION AND PROPERTIES OF PSZT

ANTIFERROELECTRIC RAINBOW ACTUATORS

G. LI, E. FURMAN and G. H. HAERTLING

Department of Ceramic Engineering, Clemson University, SC 29634-0907, USA

(Received January 25, 19961

A new type of high-displacement actuator called Rainbow (Reduced And INternally Biased Oxide Wafer)

was recently developed, and it shows promising characteristics in a variety of potential applications. The

fabrication and properties of Rainbow actuators from PSZ'T antiferroelectric ceramics with compositions

near the antiferroelecttic-ferroelectric (AFE-FE) phas_ boundary were investigated. It was found that the

chemical reduction reaction proceeded much more rapidly in PSZ'T than in PLZT ceramics. The optimum

conditions for the processing of PSZT Rainbows were determined to be ES0*C for 2-3 hours. Large

axial displacements ranging from 102 to 273 p.m were obtained from the PSZT Rainbow samples by

application of electric fields greater than the AFE-to-FE phase switching levels. The characteristics of

the field-induced displacements of the Rainbow samples were dependent on the manner of applying

mechanical load on the samples. At room temperature, the antiferroclectric PSZT Rainbows exhibited a

concave curvature with respect to the oxide side, which was attributed to the ¢ubic-to-antiferroelectric

phase _ansition in the oxide layer during cooling. The dielectric and AFE-FE phase transition properties

of the Rainbow samples were compared with those of the nonnal ceramics.

Keywords: Antiferroelectric ceramic, actuator, chemical reduction, ferroelastic domain,

internal stress.

I. INTRODUCTION

During the past several years actuators based on ferroelectric ceramic materials have

received nunterous investigations and undergone remarkable advances) Ceramic ac-

tuators offer many advantages including quick response, high induced stress, low
energy consumption and low cost which make them very attractive for a number of

newer applications. When exposed to an external electric field, a ferroelectric ceramic

will change its dimensions through ferroelectric domain reorientation and the intrin-

sic piezoelectric effect. If the ceramic is in the antiferroelectric state, strains will be

developed when the antiferroelectric state is switched to the ferroelectric state under

a sufficiently high applied electric field. Since the unit cell of the antiferroelectric

state is generally much smaller than that of the ferroelectric state, a significant change

in volume occurs during the antiferroelectric-ferroelectric transition. The field-in-

duced dimensional changes in ferroelectric materials provide a useful mechanism for

actuation application.
The electric field-induced strains from ferroelectric ceramics are relatively small

although the induced stress can be substantial. They are only a few tenths of one

percent for most of the compositional systems. This disadvantage considerably limits

their use on advanced applications such as active structures, linear motors, cavity

pumps and noise-cancelling devices that require a relatively large physical displace-

ment. To achieve a higher displacement from the ceramics, a number of strain mag-

nification mechanisms have been employed. Examples include the traditional uni-

223
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morph and bimorph benders, z and the more recent "moonie" structure. _ A bender

is able to transform a small transverse strain of the ceramic into a large displacement

in the longitudinal direction, while a "moonie" composite utilizes both the trans-

verse and longitudinal strains in producing a larger axial displacement. Generally, a

significant trade-off exists between induced displacement and stress for these struc-

tures. That is, an increase of induced displacement is achieved at the expense of

lowering generated stress significantly. There is, therefore, a need for mechanisms

that can provide large displacements while still sustaining reasonable load or stress.

This criterion has been met, to great extent, by a new type of stress-biased, oxide-

reduced composite ceramic wafer which was recently developed. 4 Designated as

Rainbow (Reduced And INternally Biased Oxide Wafer), the ceramic wafer is ob-

tained via chemical reduction of one major surface of a high lead-containing fen'o-

electric wafer, such as PLZT, by placing the wafer on a flat carbon block and heat
treating it at an elevated temperature. As the partially reduced ceramic wafer is

cooled to room temperature, a dome-shaped (sometimes saddle-shaped), internally
stressed oxide (unreduced)-reduced layer structure is formed. Very high axial dis-

placement is obtainable from an electroded Rainbow sample by application of an

electric field across the ceramic oxide layer. Also, due to the unique dome structure,

a Rainbow can sustain a stress higher than normal. Rainbow ceramics have shown

promising characteristics for a variety of potential applications. 4 "_

It has been found that the Pb(Sn,Zr,Ti)Oj (PSZT) ceramics with compositions in

the vicinity of the FE-AFE phase boundary exhibit very high field-induced strains
resulting from the transition from the AFE to the FE state. TM A longitudinal strain

of I.led,, (the highest ever reported in the literature for ferroelectric ceramics) was

claimed in the PSZT system in a study by Shebanov et al. t Furtherlnore, the strain

characteristics of these ceramics can be modified through selection of appropriate
compositions." For example, a PSZT ceramic may have a shape-memory effect sim-

ilar to some alloys or digital-like strain characteristics depending on the Icx:ation of
its composition in the phase diagram. Ceramics with specific compositions in the

AI'E phase region near the AFE-FE phase boundary are easily switched to the fer-

roelectric state by application of an electric field and remain ferroclectric upon re-

moval of the field. As a result, a shape-memory effect is achieved. The AFE com-

positions distant from the phase boundary exhibit well-defined AFE characteristics

with the digital-like strain characteristics under applied electric fields. A number of

possible applications have been proposed to utilize the strain properties of the PSZT
ceramics.,_- It

The objective of this work was to combine the high induced strains of PSZT

ceramics with the Rainbow technology to produce high-displacement actuators. In

this paper, the fabrication and properties of PSZT antiferroelectric Rainbow actuators

with compositions in the vicinity of the FE-AFE phase boundary are described.

2, SAMPLE PREPARATION

Bulk PSZT ceramics used for the fabrication of the Rainbow samples were prepared

according to the formula Pbog_Laom(ZqSnyTi,)Os. The samples studied are desig-
nated as PSZT XIYIZ or Rainbow XIYIZ in the following discussion, where the X,
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TABLE I

Diameter and oxide/reduced thickness ratio of PSZT
Rainbow samples

Rainbow Diameter Oxide/Reduced
Sample (cm) (_m)

66/23/I IHP 2.72 302/135

64/26/10HP 2.72 294/135

64,'26/10S 2.16 378/140

66/23/1 IS 2.16 2711190

66/24/10S 2.72 334/165

62/7.8/10S 2.16 195/165

tlP-hot-pressed; S-sintered.

Y and Z are the molar percentage of Zr, Sn and Ti ions in the B site of the perovskite

structure, respectively. The letters, HP or S, are also added to the Rainbow desig-

nation to indicate that the sample is made from hot-pressed or sintered ceramics. For

example, Rainbow 64/26/10S represents a Rainbow made from a sintered PSZT 64/
26/10 (ZrtSn/Ti) wafer. A number of compositions near the AFE-FE phase boundary

which were reported to have the highest field-induced strains were selected. Reagent

grade PbO, ZrO,, TiO_, SnO2 and LajO2 were used as the starting materials. Weighed

components were mixed in distilled water for 30 minutes and dried at 105"C over-

night. The dried powders were calcined at 925"C for 2 hours, and then milled for 8

hours in trichloroethylene using a polyethylene jar and ZrO2 balls. Bulk ceramics

were obtained either by sintering sample pellets at 1280-1320"C for 4 hours or by

hot pressing the pellets at 1200°C for 6 hours at 14 MPa in an oxygen atmosphere.
The sintered ceramic slugs were cut and lapped into wafers of various diameters and
thicknesses.

In the fabrication of Rainbow samples, a PSZT wafer was chemically reduced on

one of the major surfaces by placing the wafer on a graphite block and introducing
the assembly into a preheated furnace. A zirconia disk was placed on top of the

PSZT wafer to prevent possible thermal shock during processing. After the reduction,

the wafer together with the graphite block was removed from the furnace and cooled

down in air to room temperature. Epoxy silver electrodes cured at 200°C were used

for determination of the Rainbow's electrical properties. The dimensions of the Rain-

bow samples are shown in Table I. Samples with two different diameters of 2.16
and 2.72 cm were studied.

3. MEASUREMENTS

The crystalline phases of reduced PSZT ceramics were examined with an X-ray

diffractometer (Scintag XDS 2000 TM) using Cu Kct radiation at a scan rate of 2

degrees per minute. The thicknesses of the reduced layer of the Rainbows were

measured from the sample cross-sections by means of an optical microscope. Room

temperature dielectric properties of the samples were determined at 1 kHz on an

LCR meter (LEADER, 7450-01). Conventional dc hysteresis loop equipment was
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FIGURE I Schematic of apparatus for displacement measurement (not to scale).

employed to measure the relationship between polarization and electric field. Electric

fields greater than the AFE-to-FE phase transition levels were applied gradually to

the samples.

A measuring setup with an LVDT (Linear Variable Differential Transformer, 050
DC-E Lucas Schaeritz Co.), as seen in Figure 1, was used to determine the change

of the field-induced displacement with electric field and the change of the dome

height of a Rainbow with temperature. A Rainbow sample with electrodes on its

major surfaces was placed on a metal ring in a small container. The ring supported

only the edge of the sample so that the center part of the Rainbow could move up

and down without touching the bottom of the container. The container was filled

with silicon oil for insulating and temperature control purposes. The movable core

of the LVDT was adjusted to contact the center of the Rainbow sample.

Mechanical loading on the Rainbow samples was accomplished by placing weights

on top of the LVDT movable core. The variations of polarization and axial displace-
ment with electric field were measured simultaneously as the samples were loaded.

4. RESULTS AND DISCUSSION

4. !. Chemical Reduction of PSZT Ceramics

Temperature is an important factor in controlling the reduction process during fab-

rication of Rainbow samples. For PLZT ferroelectric ceramics (the most frequently
used Rainbow materials), the optimal reduction temperature was around 975"C. It

was found that the reduction reaction was considerably more rapid in PSZT than in

PLZT ceramics. A significantly thicker reduced layer in a PSZT than in a PLZT

ceramic was produced when they were reduced at the same temperature for a given

time. Figure 2(a) shows the reduced layer thickness of a PSZT Rainbow as a function

of reduction temperature for a time of one hour. The thickness of the reduced layer

began to increase rapidly at about 875°C, and tended to saturate at higher tempera-
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FIGURE 2 Variations of reduced layer thickness with (a) reduction temperature and (b) reduction time
for PSZT Rainbow 64/26/10HP.

tures. An approximately 650 Itm thick reduced layer was created in the PSZT sample

at 975°C, as compared to the 150 p.m thick reduced layer in a typical PLZT Rainbow

obtained under identical conditions. Further manifestation of the rapid reaction in

PSZT ceramics is the enhanced reoxidation of the reduced layers observed at elevated

temperatures. For example, a reduced layer 200 p.m thick was completely reoxidized
ahnost instantaneously when exposed to air at a temperature used for the reduction.

The reasons for the severe reactions occurring in PSZT ceramics have not been fully

determined, but they seem to be related to the muhivalent nature of the Sn.

Reduction time is another important factor that influences the reduction process.

Figure 2(b) shows the change of the reduced layer thickness with time at a constant

temperature of 850°C for hot-pressed PSZT 64/26/10. A nearly linear relationship
was observed.

Although the reduction reaction is very rapid in PSZT ceramics, the reduction of
the PSZT phase, unlike that of PLZT, was found to be incomplete. Figure 3(a) shows

the X-ray diffraction pattern from a PSZT sample reduced at 975"C. Even at this

high temperature a significant amount of the original PSZT phase remained in ad-

dition to the oxide phases such as PbO (massicot), ZrOz, ZrTiO4, and SnO2 which

resulted from the reduction process. At 975°C, the rapid reaction led to precipitation

of a large amount of lead phase on the sample surface. With the additional loss of

lead phase due to reoxidation during cooling, metallic lead was nearly absent from

the reduced region. The diffraction pattern in Figure 3(a) was obtained after removal

of the lead particles from the surface, and hence the diffraction peaks of the lead

phase were not observed. Figure 3(b) shows the X-ray diffraction pattern from a

sample reduced at a relatively low temperature of 850°C. At this temperature, only

metallic lead and the original PSZT phases are evident, and the lead phase was

uniformly distributed within the reduced layer.

As mentioned above, at a high temperature such as 975"C, the rapid reaction in

PSZT ceramics leads to the loss of a large portion of lead phase from the reduced

region. As a result, the reduced region has poor electrical conductivity or even be-
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X-ray diffraction patterns of PSZT 6106/10 ceramics reduced at (a) 975"C and (b) 850"C.

comes an insulator. This is detrimental to tile performance of Rainbow actuators

since the reduced layer must be electrically conductive in order for a Rainbow to

operate properly. "lb prevent the heavy loss of the lead phase from occurring, lower

reduction temperatures must be used. However, a very low temperature implies im-

practical and long reduction times. It was found that the useful temperature range

for the production of PSZT Rainbows is actually very narrow, approximately 850 ±

30°C. The optimal conditions for producing Rainbow samples from PSZT ceramics

were determined to be 8500C for 2-3 hours.

4.2. Properties of PSZT Antiferroelectric Rainbows

Figure 4 shows the polarization (P)-eleetric field (E) hysteresis loop of Rainbow 64/

26/10HP. The hysteresis loop of a normal (non-Rainbow) sample is also given in

the figure for comparison. Significant differences between the two loops are seen.

First, a finite net polarization Ap, indicating a partially poled ferroelectric state of

the sample, was found to exist in the virgin state of the Rainbow sample. This

phenomenon, which was also observed in ferroelectric PLZT Rainbows, t_ is believed

to be associated with the nonuniform internal stress in Rainbows. Second, the AFE-

to-FE phase switching in the Rainbow occurred at a much lower field level and was
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FIGURE 4
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Polarization-electric field hysleresis loops of Rainbow 66/24/10S and normal PSZT 66/

less abrupt compared to the normal sample. Since the composition of PSZT 64/26/

10 is located near the AFE-FE phase boundary, an intermediate P-E hysteresis loop

characteristic of the two phases, namely a double hysteresis loop with an appreciable

remanent polarization, was observed.

The hysteresis loops of Rainbow 66/24/10S and the corresponding normal sample

are shown in Figure 5. Because the composition is well inside the AFE phase region,

a typical double hysteresis loop with no remanent polarization is seen for the normal

sample. The marginal remanent polarization observed in the Rainbow was probably

caused by the internal stress, which will be discussed later.

Figure 6 shows the variation of axial displacement with electric field for Rainbows

64/26/10HP and 66/24/10S. A displacement as large as 273 p.m was obtained from

Rainbow 64/26/10HP accompanying the AFE-FE phase switching. The remanent

displacement at zero field was attributable to the remanent polarization as shown in

Figure 4(a). Rainbow 66/24/10S also exhibited a large axial displacement resulting

from the phase switching, but little remanent displacement was found to exist. The

step-like displacement-field relationship of Rainbow 66/24/IOS was similar to the
field-induced strain curve of the normal sample as indicated in Figure 7.
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FIGURE 7 Change of transverse strain of PSZT 66/24110 ceramic with electric field.

The axial displacement- and polarization-electric field relationships of Rainbow

66/23/I IHP are given in Figure 8. Of the antiferroelectric samples studied, this sam-

ple is closest to the FIE phase region. As can be seen in the figure, Rainbow 66/23/

1 IHP is antiferroelectric in the virgin state, but stabilized into the ferroelectric state

after being switched by the applied electric field, A large displacement, approxi-

mately 145 Is.m, was produced during the initial AFE-to-FE phase switching. The

reorientation of ferroelectric domains after the initial phase transition led to a but-

terfly-like loop of typical ferroelectries and moderate changes in the displacement.

Tables II and Ill summarize the properties obtained from the PSZT Rainbows and

normal ceramics, respectively. The Rainbow samples, in general, possessed a lower

dielectric constant and a higher loss factor than the normal samples. The phase

switching fields, E_ and EF^, of the Rainbow samples were lower than those of the

normal ceramics, varying with composition. The saturated polarization, however, was

similar in the Rainbows and the normal samples. The total field-induced axial dis-

placement of the Rainbows due to the phase transitions varied from sample to sample

and was in the range of 102 to 273 p.m depending on the geometry as well as the

material properties of both the oxide and reduced layers. The largest displacement

was found in Rainbow 64/26/10HP, which is equivalent to a strain of 0.63 relative

to the total thickness of the sample. This is over 200 times larger than the longitudinal

strain of the corresponding normal ceramic.
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TABLE II

Properties of PSZT Rainbow samples

Rainbow Dielectric tan5 EAF./EFA Ps or PR YM SM
Sample Constant (_) (kwcm) (_C,'cm2) (_m) (_,)

66/23/I lllP 796 2.2 7.5 (Ec) 35 195" 45

6,t/26/lOHP 730 3.4 19.5/--,t.0 33 273 63

64/26/10S 821 3.9 16.5/-3.0 30 187 37

66f2Ml IS 734 3.1 7.0 (E<:) 31 102" 22

66/24/lOS 626 5.4 28.5/10.0 31 208 42

62/28/IOS 826 2.3 27.5/6.5 31 II0 31

The effects of axial mechanical loading on the field-induced displacement and

P-E hysteresis loops of Rainbow 66/24/10S are shown in Figures 9 and 10 for loads

applied to the surfaces of the oxide and reduced layers, respectively. The maximum

displacement from each displacement-electric field loop was determined, and plotted

against loading in Figure 11. Clearly, the displacement characteristics of the Rainbow

are dependent on the manner in which load is applied. There is only a slight change

in the displacement up to 570 grams when load was placed on the oxide layer. The

displacement with load on the reduced layer, however, decreased continuously with

increasing loading. In both cases, it was found that loading has no significant influ-

ence on the polarization-electric field hysteresis loop. It is obvious that a PSZT

Rainbow is more advantageous when operated with loading on the oxide side.

The different characteristics under the two loading conditions just discussed may

be accounted for by the behavior of ferroelastic domains under stress. Ferroelastic
domains tend to be in line with the directions in which stress is effectively relieved.

When load is applied vertically to the oxide layer surface of a Rainbow, ferroelastic

domains are preferably aligned parallel to the surface due to the compressive stress

in the planar directions produced by the loading. This occurs because the lattice

Variations of axial displacement and polarization with electric field for Rainbow 66/231
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TABLE III

Properties of PSZT normal (non-Rainbow) ceramics
i ,i

Normal Dielectric tan6 Density EAF/EFA Ps or PR $2.s SI,S
PSZT Constant (%) _cm 3} (kv/c,,,) _.Ocm:_ (xlO 4) (xiO'L)

66/23/LIHP 810 2.3 8.11 T.0(Ec) 35 5.5 45.2.

64/26/10HP 876 1.6 8.22 231-2.0 36 6.8 29.5

64/26/10S 913 1.9 8.05 28/1.0 31 7.9 28.0

66/24/10S 990 1.2 "/.93 30/11.5 31 8.2 45.3

62/28/10S 882 1.9 7.9"7 30/9.5 32 8.5 45.7

E,,_F- Antiferroelecn'ic to ferroelectric switchingfield.
EFA - Fetroelectric to antiferroelectdc switching field.
Ps - Saturated polarizadon.
PR - Remanent polarization.
Ec - Coercive field.
YM - Maximum axial displacement with an applied electric field of 1.2 XEAg
SM - Maximum axial displacement O'M) divided by Rainbow thickness.
S2,s "Transverse field-induced strain.
S L,S- Longitudinalfield-induced strain.
* obtainedfrom initial phaseswitching.

(a) (b)
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•-..-.-..nLx i

20 kWcm 20 kVIcm

FIGURE 9 Influence of axial mechanical loading on (a) field-induced axial displacement and (b) hys-
teresis loop of Rainbow 66/24110S for loads on the oxide layer.

constant of the c-axis (antipolar direction) is smaller than that of the a-axis for the

PSZT antiferroelectric phase) Similarly, when load is placed on the reduced layer,

ferroelastic domains tend to be oriented vertical to the surface as a result of planar

tensile stress. These situations are schematically depicted in Figure 12. Since the

axial displacement of a Rainbow is dictated by the field-induced transverse strain in

the oxide layer, a larger transverse strain should represent a larger axial displacement.

Due to the different states of preferential domain alignment under the two loading

conditions, different transverse strains occur under an identical applied electric field.

As is shown in Figure 12, a sample with load applied to the oxide layer will exhibit
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FIGURE I0 Influence of axial mechanical loading on (a) field-induced axial displacement and (b)

hysteresis loop of Rainbow 66_4/10S for loads on the reduced layer.
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FIGURE tl Variation of maximum axial displacement with loading for Rainbow 66/24/10S, • for load

on oxide layer and • for load on reduced layer.

a larger field-induced displacement than one with load applied to the reduced layer.

It should be pointed out that the geometrical stiffness (e.g., the reduced/unreduced

layer thickness ratio and the ratio of the total thickness to diameter), dome curvature
and initial internal stress of a Rainbow also have influences on the characteristics of

displacement versus loading. The combined effects of the geometrical stiffness, cur-

vature and domain alignment lead to the variations of the displacements indicated

in Figure 11. Because ferroelastic domains are not polar, the domain alignment under

stress will not affect the P-E hysteresis loop, which is in good agreement with the

experimental observations.
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F1GLrR-E12 Schematic diagram of the _ransverse dimensional change in the oxide layer due to load-
induced stresses and electric field. Dashed lines in (a) and (b) represent the shape or"a portion of the
oxide layer prior to the application of mechanical loading and electric field, respectively.

4.3. Curvature and Internal Stress of PSZT Rainbows

At room temperature, a typical Rainbow possesses a dome-shaped configuration and
an internal stress field as a result of the dimensional mismatch between the oxide

and reduced layers produced during processing. Note that the internal stress refers

to the stress inside a free Rainbow and is distinguished from the stresses created by

loading as described earlier. Many of the characteristics of Rainbows have been

found to be closely related to this dome structure and internal stress. The major
contributions to the dimensional mismatch are considered to include: (1) the differ-

ence in thermal expansion coefficient between the oxide and reduced layers, (2) the

dimensional change of the reduced layer due to oxygen (and possibly lead) loss, and

(3) the dimensional change of the oxide layer resulting from phase transitions. Gen-

erally, Rainbow samples made of ferroelectric ceramics have a concave curvature

with respect to the reduced side, which is defined as positive curvature. It was found

that all the PSZT Rainbows prepared in this study exhibited a negative curvature,

i.e. the reduced side is convex. Negative curvature implies that the oxide layer of a

virgin Rainbow is predominantly, or completely, in tension depending on the reduced/

unreduced layer ratio. If the composition of a PSZT Rainbow is close to the AFE-

FE phase boundary, the internal tensile stress is sufficient to induce a change from

the antiferroelectric to ferroelectric phase. The net polarization observed in virgin

Rainbow 64/26/10HP and the reduction of the AFE-FE switching fields in the PSZT

Rainbows with respect to normal ceramics are probably the consequences of this
tensile stress.

The results in Figure 13 are presented to show that the negative curvature in the
PSZT Rainbows is attributable to the cubic-to-AFE phase transition. Specifically, the

curvature with the concave oxide layer is caused by the fact that the reduction in
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FIGURE 13 Changes of the dome height with temperature for Rainbow 66/23/11HP.

the dimensions of the oxide layer at the cubic-to-AFE phase transition exceeds the

dimensional reduction of the reduced layer during cooling of a sample to room

temperature. The dome height shown in Figure 13 is defined as the axial height of

a Rainbow with respect to the unreduced wafer. Positive dome height corresponds

to positive curvature. The curvature of Rainbow 66/23/11HP, which is antiferroelec-

tric, was seen to change from negative to positive when the Rainbow was switched

from the virgin antiferroelectric to ferroelectric state by an applied electric field. As

the temperature was increased, the positive curvature changed back to a negative

value at tile FE-to-AFE phase transition T_.^n_. The curvature remained negative

within the AFE phase range and became positive again near the Curie point. The

reduction of temperature brought the sample back to the original antiferroelectric

state and thus a negative curvature, as is indicated in Figure 13. All these clearly

show that the antiferroclectric state is responsible for the negative curvature of PSZT
Rainbows.

5. CONCLUSION

The fabrication and properties of PSZT antiferroclectric Rainbow actuators have been

investigated. The reduction reaction in PSZT ceramics proceeds much more rapidly

than in PLZT ceramics. The optimal reduction conditions for the fabrication of PSZT
Rainbows are 850°C for 2-3 hours. The antiferroelectric-ferroelectric phase transi-

tions occur at a lower field strength in Rainbows as compared to normal ceramics.

Large axial displacements in a range of 102 to 273 _m were obtained from the

Rainbow samples by application of electric fields exceeding the phase switching

levels. The field-induced displacements of the PSZT Rainbows are dependent on the

manner of applying load to the samples. When load is placed on the oxide layer,

there is only a slight change in the displacements for loads up to 570 grams. The

displacement with load on the reduced layer, however, decreases markedly with

increasing load. This behavior can be explained by the preferential alignment of
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ferroelastic domains under stress. Antiferroelectric PSZT Rainbows generally have

negative curvature at room temperature due mainly to the paraelectric to antiferro-

electric phase transition in the oxide layer during cooling. The changes of material

properties of PSZT Rainbows with respect to normal ceramics are associated with

the internal stress resulting from processing.
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Rainbow actuators and sensors: a new smart technology _
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ABSTRACT

Recent developments in the technology of ferroelectric, piezoelectric, electrostrictive and antiferroelectric ceramic

actuators have clearly demonstrated that the materials required for future applications such as positioners, levelers, pumps,
vibration-free stxuc_es and variable-focas elements will need to be more sophisticated (multifunctional and smart), more
economical and possess a higher degree of performance than presently available. One recently developed method for

producing considerably higher-than-normal displacement in these materials is known as the RAINBOW (Reduced and
INternally Biased Oxide Wafer) technology. This acronym denotes the basic active _ of the Rainbow device which

is produced by a special high temperature chemical reduction process. In its most basic sense, a Rainbow can be considered

to be a pre-stressed, monolithic, axial-mode bender; however, because of its unique dome or saddle-shapod configuration, it

is able to produce much higher displacements (up to several mm depending on size) and sustain moderate loads (up to 10
kg depending on thickness) than normal benders such as unimorphs and bimorphs. The technology of producing and
characterizing such Rainbows as well as methods for increasing their utility by means of stacked actuators for increased

linear displacement and matrix arrays for enhanced coverage in wide-area applications such as smart skins, autoleveling
structures and deformable coatings are described.

Keywords: ferroelectrics, piezoelectrics, electxostrictors, actuators, sensors, Rainbow devices, PLZT, smart structures,
actuator arrays, pre-stressed structures

1. INTRODUCTION

The recently renewed, worldwide interest in ferroelectric, piezoelectric, electrostrictive and antiferroelectric

ceramics by a number of commercial, industrial and government agencies has been brought about as a result of their unique
combination of properties (dielectric, electromechanical, photomechanical, electrooptic, memory, etc.) which make them

nearly ideal candidates for a variety of actuating and/or sensing applications where small size, low weight, low or high
force, small displacement and variable sensitivities are required. Such applications include automobile and home utility

improvements, industrial automation, systems for national security, aircraft control and maneuverability, data processing,
entertainment, communications and space exploration, Furthermore, since they are capable of the combined functions of

actuating, sensing and controlling in response to an external environment or condition, they belong to that special class of
multifunctional ceramics known as "smart" materials. !

In spite of their many obvious advantages in these applications, such ceramics are still limited in their ability to
deliver high energy or power; e.g., a ceramic Linear actuator being able to simultaneously generate high displacement and

high force under static or quasi-static conditions is still beyond the scope of present ceramic technologies. In general,
such actuators can generate significant force (>10 s N) with very little movement (on the order of microns), or they can
deliver millimeters of displacement via strain-umplifying techniques with little or no force; but not both at the same time.

The first of these is typified by the monolithic or multilayer, direct extensional actuator while the second is typical of a
bimorph (two opposed active ceramic elements) or unimorph (one ceramic element with inactive metal substrate) actuator.

Deliverable energy densities per unit mass for the PZT and PMN-base¢ direct extensional actuators were reported by
Giurgiutiu and co-workers 2 to range fxom 0.2 to 1 J/kg at an overall average electrical-to-mechanical conversion efficiency
of 20%.

An assessment of the present-day ceramic actuator technologies for ceramic materials is given in Figure 1, As seen
from thefigure,directextensionalconfigurations,compositeflextensionalstructuresand bending-modedevicesareallused
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A comparison of ceramic actuator technologies.

to achieve an electromechanical output. Trade-offs between stress generating/load-bearing capability and strain

(displacement) must usually be made when designing for particular applications. Maximum displacement can be seen to
be achieved with composite or bender struaures; however, this is usually accomplished at the expense of less load-bearing

capability. A more recently developed strata-amplifying method for piezoelectric and electrostrictive ceramic materials is
kno_a as the RAINBOW (Reduced And Internally Biased Oxide Wafer) technolog3". A complete reference listing for the

Rainbow technology is given in references 3 through 17. The properties of the Rainbow are such that it is classified as a

pre-stressed, bender actuator which expands the load-bearing capability of the conventional benders while at the same time
maintaining or increasing their mechanical displacement characteristics. Key features of the Rainbows are their simplicity,

ease of processing, flexibility and surface mountable configuration. Rainbow actuators have been successfully fabricated
from all of the common high-lead containing ferroelectric, piezoelectric, electrostrictive and antiferroelectric compositions
such as PZT, PLZT, PSZT, PBZT, PNZT, PBiZT, PZT-5A, PZT-5H, PZT-4 and PMN-PT. s'u34

The purpose of this paper is to describe the Rainbow technology in terms of materials, processing, properties and

applications. Methods for increasing their utility via cascading arrangements for increased displacement and matrix arrays
for wide-area coverage are also described.

2. RAINBOW MATERIALS AND PROCESSING

2.1 Rainbow materials

Although a number of different compositions have been successfully prepared as Rainbows, those most compatible

to the specific processes used and most amenable to achieving the desired properties are in the PLTF solid solution family.
Typical high displacement, ferroelectric compositions are 1/53/47 (La/Zr/Ti) and 5.5/56/44 for low and high dielectric

constant applications, respectively; whereas, the usual compositions for the electrostrictive-type applications are 9/65/35 or
8.4/70/30. These specific compositions are pointed out in the PLZT phase diagram given in Figure 2. As may be noted,
the ferroelectric materials are morphotropic phase boundary compositions, and the non-memory, electrostrictive materials

are compositionally located along the ferroelectric-to-paraelectric phase boundary. 9

2.2 Rainbow processing

The Rainbow technology fundamentally consists of a new processing method that is applied to standard, high lead-

containing ferroelectric, piezoelectric and electrostrictive ceramic wafers which are transformed by the process into a
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Figure 2. Room temperature phase diagram of the PLZT solid-solution system along with the PZT
system vs. temperature. The specific compositions (8.4n0130, 9/65/35, 5.5/56/44, 1/53/47)
are indicated by the bold black circles, left to fight, respectively.

monolithic, composite structure consisting of a messed dielectric and a chemically reduced, electrically conductive layer
which acts as the messing element as one of the electrodes for the final device. Since all of the materials axe ferroelectric

or electrically-enforced ferroelectric materials, they axe multi_functionaland smart, by nature, and axe thus capable of
performing both actuator and sensor functions, simultaneonsly.

The high temperaturechemical reduction process involves the local reduction of one surface of a planar ceramic
plate, thereby achieving an anisotropic, stress-biased, dome or saddle-shaped wafer with significant internal tensile and
compressive stresses which act to increase the overall strength of the material and also provide its unusually high
displacement characteristics. According to previously reported work, the chemical reduction process proceeds via simple
reactions consisting of the oxidation of the solid carbon (graphite) block to carbon monoxide and further oxidation of the
carbon monoxide gas to carbondioxide with the associated loss of oxygen from the PLZ'r oxide in contact or in near contact
with the graphite block.5 Figure 3 shows cross sections of the dome curvature and a fracture surface which are typical of
the Rainbow ceramics.

(a) Co)

Figure3. Cross-sectionalviewsofPLZT 5.5/56/44Rainbowwaferillustrating(a)dome profileand

(b)fracturesurfaceofreducedlayer(bottomportion)andunreduccdPLZT (topportion).

Rainbowceramicsareproducedfromconventionallysintercdorhotpressedceramicwafersby means ofa few

simplestepsrcquixingapproximatelytwo hoursofadditionaltime.A RzJnbowisproducedfzoman as-receivedwaferby
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placing it on a flat graphite block, placing a protective zirconia plate of the same size on top of the wafer and introducing
the assembly into a furnace held at temperature in a normal air atmosphere. The part is treated at a temperature of 975°(2
for one hour, removed from the fih--nace while hot and cooled naturally to room temperature in about 45 minutes.- A

reduced, cermet layer, approximately 150 um thick, is produced in the wafer under these treatment conditions, When cool,
the dome or saddle-shaped wafer is Lifted fzom the giaphite block; brushed and sanded lightly on the reduced (concave) side

to remove any metallic lead particles and to expose the electrically conductive, reduced cermet beneath the thin, reoxidized

layer, and then electroded for test and evaluation A variety of electrodes can be used such as epoxy silver, fired-on silver

and vacuum-deposited metals. After applying appropriate electrodes, the Rainbow is completed and ready for operation. It
should be noted that although Rainbows are processed in bulk wafer form, after heat treatment they may be diced or
scribed into smaller elements (- 1 mm 2) for a pick-and-place operation onto a smart hybrid circuit. This technique iS

possible since each individually diced element possesses a smaller but similar dome structure with a radius of curvature

identical to the larger wafer. Even though the displacements of the smaller individual elements are proportionately less
than the parent wafer, they nevertheless, are large enough (5 - 50 microns) to be useful in some devices as actuators and

sounders or as sensors. Some typical examples of sizes and shapes of Rainbows are shown in Figure 4.

Figure 4. Typical examples of sizes and shapes of Rainbow elements

2.3 Rainbow operation

In regard to operation, a Rainbow is similar to a device known in the industry as a ummorph bender. A unimorph

is composed of a single piezoelectric element externally bonded to a flexible metal foil which is stimulated into action by the

piezoelectric element when activated with a ac or dc voltage and results in an axial buckling or displacement as it opposes
the movement of the piezoelectric element. However, unlike the ummorph, the Rainbow is a monolithic structure with
internal compressive stress bias on the piezoelectric element; thus producing the dome structure, rendering it more rugged
and able to sustain heavier loads that normal. The integral electrode (usually the bottom electrode) consists of metallic lead

intimately dispersed throughout the semiconductive, porous oxide layer. The change in shape of the wafer after reduction is
believed to be due to (1) the reduction in volume of the bottom reduced layer (largely metallic lead) compared to the

unteAuced material as a result of the loss of oxygen from the lattice, (2) the differential thermal contraction between the
reduced and unreduced layers on cooling to room temperature and (3) any change in volume which may occur on cooling

through the Curie point as the material undergoes a phase transformation from a smaller, non-polar, cubic unit cell to a

larger, polar, ferroelectric unit ceU.

Like other piezoelectric devices, Rainbows may be operated with a de, pulse de, or ac voltage; however, when
driven with ac, the largest displacements are usually achieved at 100 Hz or less. In operation, the dome height of the
Rainbow varies as a function of the magnitude and polarity of the voltage. When a given polarity of voltage is applied, the

dome decreases in height depending on the magnitude of the voltage; and alternatively, when the polarity is reversed, the
dome increases. The large axial motion of the dome is largely due to contributions from (1) a lateral contraction produced
in the material via the d3t coefficient and (2) a stress-directed domain switching process near the top surface wherein

c-axis domains lying in the plane of the wafer as a result of the tensile stress are induced by the electric field to switch to a

position normal (90°)to the plane. It should be remembered that the 180° domains that reorient in the electric field do not
cause a change in shape for the Rainbow. A model of this effect is iUustrated in Figure 5.
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Figure 5. A model of the changes taking place during operation of a Rainbow wafer, depicting various stages of
domain alignment and reorientafion in a Rainbow actuator: (A) as processed and electroded, 03) first

application of voltage causing domain reorientafion, (C) complete application of voltage producing near

complete domain alignment and flattening of the wafer, (D) the asymmetrical hysteresis loop obtained
on the first application ofvoltsge indicating partial, stress-induced (ferroelastic) poling and (E) the
asymmetrical strain loop obtained on first appLication of voltage.

3. PROPERTIES

3.1 Dielectric properties

The temperature dependent dielectric behavior for two PLZT compositions; i.e., 1/53/47 and 9/65/35, are shown in

Figure 6. It can be seen from the figure that a gradual rise occurs in the relative dielectric constant (1 kHz) of 1/53/47
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Figure 6. Temperature dependent dielectric properties of PLZT Rainbow wafers.

flom a room temperature value of approximately 1100 to about 2700 at 200°C. No peak is observed in this range for this

composition because its Curie point is 330°C. On the other hand, composition 9/65/35 shows a change in dielectric
constant from 3200 to 5700 over this same temperature range with a peak occurring at 105°C, which is its usaml Curie point
as determined from small signal measurements. Since this composition is an electrostrictive, relaxor-rype material, this

Curie point does not coincide with its loss in polarization which occurs at about 20°C; thus, making it one of the most

sensitive, high displacement, electrostrictive Rainbow materials. It may be noted that the dielectric constants for both

compositions and also the dissipation factor for 1/53/47 are comparable to previously reported values, and this indicates that
the Rainbow reduction process does not substantially change the dielectric properties of the unreduced part of the structure.
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3.2Hysteresisloops

Typical examples of tic hysteresis loops for compositions 1/53/47 and 9/65/35 are given in Figure 7. The loop in
Figure 7(A) was taken on the ferroelectric Rainbow element (1/53/47) in its virgin condition before any other measurements

I HYSTERESIS LOOPS J

P

E

P

r

E

DISPLACEMENT LOOPS J
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Figrtre 7. Hysteresis loops (P vs. E) and electromechanical displacement loops (D vs. E) for PI.2T Rainbows
1/53/47 (A and C) and 9/65/35 (B and D), respectively.

were made. It should be noted that on the initial application of positive voltage to +450V there was approximately 60% of

the total remanent polarization switched rather than the usual 50% one ordinarily observes in a virgin, randomly oriented

ceramic.. This behavior is highly unusual and indicates that the Rainbow ceramic was partially poled before testing.
Additional audio and piezoelectric tests of other virgin parts also indicated that the elements were partially poled to varying

degrees; i.e., some very little and others as high as 75%.

One explanation for this condition occurring in the electrically virgin state is that the mechanical compressive and tensile

messes produced in the Rainbow wafer during processing are acting together to switch some of the doma_ in this soft
ferroelectric/ferroelastic material. Since uniform stress is a symmetrical quantity, it is recognized that it alone is

insufficient to produce a net polarization in a given direction even though it may be of sufficient magnitude to switch
domains; however, a stress gradient such as produced by the Rainbow bending process is a vector quantity and can, indeed,

produce the observed effect. This non-uniform stress is believed to be responsible for the partial poling of the Rainbow
wafers. Measured properties on the above 1/53/47 wafer were: P_ = 44.8 uC/cm 2, Ec = 7.5 kV/cm, dielectric constant =

1210 and dissipation factor = 0.047.

The virgin loop of Figure 703) is a typical one for the electrostrictive (9165/35) type of Rainbow materials and is very
similar to that obtained on bulk electrooptic material. Measured properties on this wafer were: Pm, v/==28.3 uC/cm 2,

dielectric constant = 3142 and dissipation factor = 0.085. As a matter of course, no unsymmetrical hysteresis loops were

observed in the electrostrictive materials, and none was expected, since there axe no stable domains in these materials at
zero electric field. Conceivably, a high enough stress could precipitate stable domains in a very near-ferroelectric material,

however, this was not experimentally confirmed

3.3 Electromechanicai displacement loops

Displacement vs. electric field (butterfly) loops for the Rainbow wafers described above are also shown in Figure'/.

Figure 7(C) illustrates the Rainbow axial motion as the sample is electrically switched from zero to +450V, to -450V and
back to zero, however, in this case this loop was not taken on the virgin wafer. It may be noted that this loop is remarkably
similar to that observed when measuring the direct extensional 0ongitudmal, lateral) displacements via the piezoelectric d33

or d3t coefficients. The value of displacement in the + voltage direction was measured at 190.5 urn, and the total amount

of displacement (+/-) was 432 urn.

Figure 7(D) shows the displacement loop of the electrostrictive Rainbow material (9165/35) mentioned above.
Since 9/65/35 is a relaxor material there should be little or no memory, and the same value and sign of displacement
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should be obtained whether a + or a - voltage is applied. One can see by switching tl_ sample through a full voltage loop
that a small amount of remanent displacement (strain) is present which is probably due to the close proximity of this
composition to a FE phase. A further indication of this incipient FE phase is the higher than normal value of Plo (Pio =
28.3 vs. a more normal 18.0 uC/cm 2) as given above. Measured value of total displacement for this wafer was 178 urn.

3.4 Voltage dependent displacement characteristics

The displacement characteristics as a function of applied voltage are given in Figure 8 for some selected
compositions. One of the most striking features of this figure is the very high displacements achieved by these Rainbow
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Figure 8. Axial dislacement characteristics of Rainbow PLZT compositions as a function of voltage.

ceramics at moderate electric fields, e.g., 400 volts is equivalent to an electric field of 10 kV/cm. Composition 9/65/35 is
noted to possess the highest displacement of 210 um at a maximum voltage of 600 volts, however, its displacement is
characteristically non-linear because of its electrostrictive nature. Compositions 1/53/47 and 5.5/56/44 are ferroelectric
materials, and thus, are more linear in behavior. As a general rule, the displacements of the ferroelectric materials are
lower than those of the electrostrictive compositions, particularly when operated at higher voltages and one polarity;
however under bipolar operation, the displacement values of the ferroelectric materials will commonly be double the values
shown in the figure.

Figure 9 illustrates the unusually large range of displacements obtained for Rainbows as a function of thickness,

Figure 9.

1O0OO
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: . _ : Dllme_. 31 75 mm (1 25 in,)

0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0.8 0.9 1 1.1 1.2 1.3

Thicimeu (ram)

Displacement characteristics of Rainbow PL2T 1/53/47 as a function of wafer thickness.
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where thickness is plotted against the log of displacement. Wafer thickness has been found to have a significant effect upon
axial displacement primarily because of the change in motional mode; i.e., from dome (spherical) to saddie (cylindrical)
flexing, as the wafer thickness is reduced to approximately one-hundredth of the diameter. For example, a 31.75 mm (1.25
inch) diameter wafer usually develops a saddle-mode configuration when its thickness is less than 0.32 nun (0.013 inch).
Saddle-mode operation provides maximum displacement with mi,imum load bearing capability (<100 grams); and
therefore, should only be considered for special applications. It can also be seen from the figure that there is a thickness-
dependent mixed mode region separating the other two modes. Replotting the data (in the dome-mode region) as
displacement vs. 1/thickness: reveals a near linear relationship and demonstrates that the displacement is inversely
proportional to the square of the wafer thickness as shown in Figure 10.
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PLZ'I" 1,'53/47 7
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Figure 10. Replot of data from the dome-mode region of Figure 9 for Rainbow 1/53/47

The dependence of the axial displacement of a Rainbow g-afer on its diameter is shown in Figure 11 where

displacement is plotted against the wafer diameter squared. As can be seen, an excellent linear relationship is obtained.
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Figure 11. Axial displacement of Rainbow PLZT 1/53/47 as a function of the wafer diameter squared.

Thus, the data from both Figures 10 and 11 confirm that a Rainbow behaves very much like a normal bending actuator
according to the equation: is

y = 3/2 * d31* d2/t2* V

or, in general,
y = m * d2/t2* V
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where y is the axial displacement, (t3, is the lateral piezoelectric c_fficient, m is a constant (1 x 10-4 urn/V), d is the wafer

diameter, t is the wafer thickness and V is the applied voltage. Maximum displacement is accordingly obtained with larger
diameter and thinner wafers. A maximum displacement of 3mm at an operating voltage of 450 V has been obtained, to
date, with a single Rainbow wafer having a diameter of 100 mm and a thickness of 0.375 mm.

The effect of an unconstrained axial point load on the displacement of an activated Rainbow is given in Figure 12 for

T Thickness: 0.5 mm (0,020 I_1

i 200 _ge: 500V (umpotar)

0.5 1 1,5 2 2.5 3

Petmt_eae(_)

Figure 12. Concentrated (point) load-bearing characteristics of Rainbow PLZT Compositions

compositions 1/53/47 and 9/65/35. PLZT 1/53/47 can be seen to be relatively ineffective when loaded with a dead weight of
1.5 kg (3.3 lbs), whereas, composition 9/65/35 is still effective at a load of over 3 kg. This resuJt is not too surprising since
the elastic modulus of 9/65/35 (10.9 xl04 MPa) is noticeably higher than that of 1/53/47 (7.8 x 104MPa). Another point to

note from the figure is the increase in displacement with the introduction of a finite amount of load on the device. This
effect was previously reported by Furman, et al.,8 and is believed to be due to the lowering of the sti_ess of the ceramfic

when the ferroelectric phase is field enforced. This decrease in elastic modulus with field leads to an increased flattening of

the wafer under load; however, when the field is removed, the material become stiffer again and the original height

(curvature) of the wafer is restored. This phase transformation effect leads to a increased range of displacement up to an
amount of loading which can be readily accommodated by the wafer without the electric field. As a function of frequency,
9/65/35 is also superior to 1/53/47 in that its displacement is relatively constant from 0.1 Hz to several hundred Hertz.

Another concern of actuator designers is the amount of force that can he generated by an actuator when voltage is

applied. This is shown in Figure 13 for a 1/53/47 Rainbow of standard size. As can be seen, the force generated is a linear

1.e
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Figure 13. Effect of applied voltage on the force generated by a PLZT 1/53/47 Rainbow wafer.
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function of voltage until the onset of saturation for this particular configuration A maximum force of 1.3 kgf was achieved
at 450 volts.

3.5 Rainbow stacks and arrays

Previous work on high displacment Rainbow actuators has shown that they possess the capability to be configured
into linear stacks for higher displacemem devices or into larger area arrays for actuator/sensor functional components. The

stacking arrangement consisted of linearly cascading several Rainbow elements together in multiple groups of two in a

clamshell arrangement and then bonding these clamshells together into a single unit. Sending/receiving arrays, on the
other hand, were individually placed side-by-side (sandwiched between to thin layers of ductile metal foil and bonded

together with conductive Ag epoxy) in order to maximize their area while minimizing their thickness. Thus, gacks

consisted of Rainbows arranged mechanically in series and electrically in paraUel while arrays were Rainbows arranged
both mechanically and electrically in parallel, individually addressed elements in some of the arrays were achieved by
employing a matrix scheme wherein separate bottom electrodes made up the rows and separate top electrodes were the

columns. Operation of a single Rainbow was then obtained by applying voltage between a row and column electrode.

Typical examples of stacks and arrays axe shown in Figure 14.
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(B) (C)

Figure I4. Examples of (A) Rainbow stacks and a Rainbow array showing (B) the individual Rainbow elements before

applying the top metal foil and (C) completed smart skin array 1.25 nun thick.

The characteristics of the PLZT Rainbow stacks were evaluated as a function of wafer thickness, wafer diameter,

point load-bearing capability and uaipolar or bipolar voltage displacement. These data are given in Figure 15. First it caxt
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Figure 15. Displacement characteristics of various types of eight-unit Rainbow clamshell actuators. Type legend:
composition�wafer thickness in inches�wafer _ameter in mcl_es/poin_ load in grams/bipolar On') or unipolar (3,)

voltage displacement.

be seen that bipolar operation always achieves higher displacement by at the expense of higher non-linearity; secondly, in

unipolar operation the 8.5/65/35 material achieved higher displacements and could sustain higher loads than the 1/53/47
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material; however, in bipolar operation the 1/53/47 was superior in terms of displacement; and thirdly, small compact
actuators, 12.7 mm dia. x 24 mm long, were capable of achieving moderate displacements (308 urn) under modest loads of
1 kg. or less. In general, total displacements were found to scale linearly with the number of individual Rainbow elements.

In regard to the arrays, several different Rainbow arrays consisting of up to 42 Rainbow elements were evaluated

4.0 APPLICATIONS

A number of examples of applications are given in this section in order to demonstrate the versatility of the Rainbow

technology. These working models are essentially discrete, proof-of-principle devices which reqnire further engineering,

design, miniaturization and modifications in order for them to be suitable for hybrid microelectronics or integrated
structures. A number of advantages and features of the Rainbows are: (1) simplicity, (2) solid-state, (3) monolithic, (4)

pre-stressed for greater strength and durability, (5) can sustain or generate moderate loads, (6) surface mountable, (7) very
high axial displacement, (8) above-the-plane displacement, (9) no bonding layers, (10) temperature compensation possible,
(11) can be stacked to multiply displacement and (12) can be fabricated into large area arrays.

I Chassis Speaker I

I Toys I

ITableLeveler I

I Substrate PumpI

:. _.'_

IRemote Tweezer I

Jet Pump I

I Cavity Pump I

F'tgure 16. Examples of working model devices using Rainbow ceramics as actuators

The Rainbow devices shown in Figure 16 are typical examples of a number of applications envisioned for this

technology. As can be seen, they range from actuators to speakers, and remote handlers to pumps. A more extensive list

of applications include (1) linear actuators, (2) cavity/piston pumps, (3) loud speakers, (4) reciprocating motors, (5)
relays/switches/thermostats, (6) sensors, (7) hydrophones/hydroprojectors, (8) variable-focus mirrors/lenses, (9) optical
deflectors/scanners, (10) vibrating delivery systems, (11) liquid delivery systems, (12) antivibration/noise-cancelling

devices, (13) sonic and ultrasonic devices and (14) auto-leveling platforms.
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5. CONCLUSIONS

The prospects for u_g Rainbows in discrete hybrid and integrated microelectronics are promising for future

applications involving smart ceramics such as ferroelectrics, piezoelectrics, electrostrictive and antiferroelectric materials.
Rainbows have opened up a new dimension in high displacement actuators. The key to adapting these materials to specific
devices and applications is the manner in which answers are found to questions concerning their reproducibility, reliability,

longevity and cost effectiveness. Further development and design work are obviously needed in order to answer these

questions.
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Stress-Induced Effects in PLZT Ceramics

Gene H. Haertling

Gilbert C. Robinson Department of Ceramic Engineering
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Abstract - Soft, high lead-containing, ferroelectric ceramic
materials such as PLZT are known to be highly vulnerable to
the effects of mechanical stress at room and elevated

temperatures as a consequence of their ferroelastic and
pyroplastic natures which are usually manifested in some form
of nonlinear behavior within the material. Examples of such
behavior include (1) hydrostatic and shock-wave stimulated
structural phase transformations as in stress-induced depoling
of explosive-to-electrical 0EET) transducers, (2) mechanically
stimulated domain reorientation as in shape memory effects
and Rainbow devices, (3) mechanically stimulated electrooptic

effects as in ferroelectric picture (Ferpic) devices and
Rainbows, (4) mechanically stimulated strength effects and (5)
thermo-mechanically stimulated dimensional changes as in
high temperature creep. The improved utility or increased
sensitivity of these materials as a result of stress-enhancing
techniques is described.

I. INTRODUCTION

Ferroelectrics have long been known to be highly

susceptible to the state of stress existing within the material,

regardless of whether that stress is internally or externally

generated. This is especially true for the soft (easily

electrically switchable) and super-soft PLZT ceramics which

commonly possess reduced Curie temperatures of less than
200°C. In such materials, their intrinsic polarization,

strain and properties related to domain reorientation are

significantly affected by the magnitude, the type and the
direction of the stress. Indeed, in many cases, it is this great

sensitivity to stress which makes these compositions useful

and advantageous in piezoelectric applications such as

microphones, sensors and accelerometers: while on the other

hand, this same stress vulnerability is undesirable for sonar,

ultrasonic actuators and ignitors. Thus, one can easily

come to the conclusion that it is important and very

knecessary to have a working knowledge of the stress

sensitivity of these materials.

Stress sensitivity arises in ferroelectric (polarization vs.

electric field) materials because of the piezoelectric coupling

between polarization and strain. When this strain (and

coupled polarization) can be switched by application of a
mechanical stress and there are two or more stable

orientational states in the absence of the stress, then a

material possessing this characteristic is referred to as a
ferroelastic (strain vs. mechanical stress) one [ll. It is this

highly sensitive ferroelastic property of the soft ferroelectrics

which causes them to be susceptible to all manners of stress.

The effects of stress on piezoelectrics and ferroelectrics

have been amply reported in the literature, dating from at

least five decades ago [2 - 9]. From this body of work it has

been shown that both steady state and transient mess,

whether piezoelectrically self-generated or externally

generated, can (1) significantly affect properties such as

dielectric constant, loss tangent, piezoelectric coefficients,

Curie point, elastic modulus and mechanical strength, (2)

influence switching behavior, domain reorientation and

poling (3) induce phase changes which lead to substantially

altered properties, (4) drastically alter stress-optic and

optical birefringent characteristics and (5) change the

geometric dimensions of a material by means of high-

temperature creep. In many of the cases, these effects are

harmful to the performance of the material and the device;

however, when prudently designed and properly directed,

stress can be used to one's advantage such as in the cases of

explosive-to-electrical (EET) _cers and high-

displacement Rainbow actuators.

The object of this paper is to review selected examples of
the effect of stress on the soft ferroelectric ceramics with

special emphasis on the PLZT materials. The specific cases

were chosen to describe the positive effects of stress on the

enhancement of properties and performance.

II. STRESS-INDUCEDEFFECTS

A. Stress-lnduced Polarization Depoling

Studies on the stress-induced depoling of piezoelectric and
ferroelectric ceramics were initiated in the mid-1950s at

Clevite Corporation, the company which patented and

trademarked the original lead zirconate-lead titan,ate OaZT)

compositions (e.g., PZT-4, PZT-5, PZT-8) that are so

familiar to those working in the field of ferroelectric

ceramics[10l. In this work, Berlincourt and co-workers first

investigated the effects of uniaxial compressive stress on

PZT; and later in 1958, they reported on the depoling

behavior of a soft, niobia-doped PZT (52/48 Zr/Ti ratio) in

response to hydrostatic pressure such as a material might

experience in an under water transducer. It was found that

these morphotropic phase boundary (MPB) materials release

their polarization rather gradually over a pressure range
from near zero to greater than 70 MPa and that most of the

lost polarization was unrecoverable.
Further studies showed that PZT ferroelectric compositions



located near the FE-AFE phase boundary (PSZT 66/27/7

Zr/Sn/Ti is typical of this type) were more desirable because
they released their stored charge more suddenly, and in some
cases, at substantially lower pressures. This pressure

depoling effect was found to be a result of a pressure-
enforced phase transformation from the polar FE state to the
nonpolar AFE state. A typical example of such behavior is
shown in Fig. 1 where hydrostatic depoling is compared
with umaxial stress depoling [11]. PLZT compositions

located along the FE-AFE boundary also exhibit this same
behavior.

in Fig. 2.
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Fig 1, Electrical depoling behavior of nobia-doped PSZT 66/27/7

(Zr/Sn/Ti) for (a) hydrostatic mess, Ca) one-dimensional mess

(onclamped) parallel to polar axis and (c) one-dimensional main (damped)

parallel to polar axis. [11]

When this depoling is accomplished in a transient mode
via explosive shock waves or projectile impact, useful

electrical polses of a few hundred kilowatts lasting for
several microseconds may be obtained [12]. These one-shot,

explosive-to-electrical (EET) power supplies have found a
number of uses in primarily military applications.

B. Stress-Induced Domain Reorientation

One manifestation of stress-induced domain rcorientation
in ferroelectric ceramics is known as the shape memory

effect; i.e. the recovery of a plastically deformed element to
its original shape by heating. This effect was discovered by
Schmidt and Boczek [13] in PLZT ceramics in 1978 during
an investigation of PLZT 8/65/35 (La/Zr/Ti) and was further
studied by Kimura, Newnham and Cross [14] while working
with PLZT 6.5/65/35.

The effect is easily demonstrated by mechanically bending
a PLZT bar at room temperature or at some elevated
"characteristiC' temperature below the Curie point. After

bending the bar, and cooling to room temperature, it will
retain its new shape (i.e., possesses memory) indefinitely.
However, when the bar is heated above this characteristic

temperature, it will return to its original shape. Remarkably
high bending angles, larger than 10°, and strains as high as
0.25% have been reported for this reversible effect [13, 15].

Examples of PLZT bars bent at room temperature are given

Fig 2. Two PLZT 7/65/35 oa'anfic bars which wore bent at room temperature.

This effect can be explained in terms of domain
reorientation wherein the applied mechanical stress within
the material is minimized by the accommodation of the
strain relieving 71° and 109° rhombohedral domains. These
domains disappear along with the spontaneous polarization
when the material is heated above the Curie temperature;
and thus, the material reverts back to its original condition.

Consequently, it can be seen that the domain reorientation
process makes the material more mechanically compliant up
to a point where all of the strain relieving domains are
reoriented, and beyond that point, the material becomes
mechanically stiffer and, once again, acts like a brittle solid.
Of course, above the Curie temperature, the material does

not display any of these effects.

Another example of stress-induced domain reorientation is
exemplified by the RAINBOW (Reduced And Internally
Biased Oxide Wafer) actuator. This new type of high

displacement bending actuator consists of a high lead-
containing ferroelectric material (e.g., PLZT) which is
chemically reduced on only one surface in order to render
the resulting reduced layer electrically conductive and to
impart an overall stress gradient to the wafer. The high
compressive radial stress (150 - 200 Mpa) developed in the
wafer as a result of differential thermal contraction between

the reduced and unreduced layers, as well as any volume
change on cool down through the Curie temperature,
produces a pronounced spherical (dome) or cylindrical
(saddle) curvature to the wafer thereby allowing it to achieve
very high displacement when electrically activated.

Studies have shown that, in addition to the normal d31

contribution, the reason for the unusually high displacement
resides in the fact that (1) the high stresses (compressive in
the interior and tensile on the surface) produce domain
reorientation and (2) the high stress gradient produces
partial poling of the wafer by means of polarization
alignment. This is illustrated schematically in Figure 3 by
showing the changing curvature of the wafer as the domains
reorient under the influence of stress and electric field. The

changing curvature then leads to the axial displacement
which is maximized at the center of the wafer.
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Fig3. Various stages of domain alignnent and reorimtation in a Rainbow

actaator, depicting conditions: (A) as processed and eloctroded, (B) first
application of voltage and (C) complete application of voltage.

During operation, a ferroelectric Rainbow actuator such as
PLZT 1/53/47 achieves the very high displacement by
constantly reorienting the lateral, strain-producing domains
as the voltage is switchecL In the case of an electrostrictive
Rainbow actuator, this same effect is involved as the
domains change from micro to macro dimensions.

all of the domains to the same reset position of saturation in
the thickness direction.

The strains produced in the Ferpic device are of the order
of 3x 10-3, and the internal fields associated with strains of
this magnitude are estimated to be 90 kV/cm. Internal fields
of this magnitude are large enough to not only influence, but
in a real sense, control the domain switching process in the
ceramic.

Another example of stress-induced birefringence can be
demonstrated in the case of a Rainbow actuator. Since the
electrostrictive Rainbows are generally fabricated from the
optically transparent relaxor PLZT compositions such as
9/65/35, it is quite Simple to exlu'bit this behavior by simply
polishing the two side faces of a rectangular Rainbow bar
and then placing it under a polariscope consisting of two
crossed, linear polarizers and a back light. When this is
done as shown in Fig. 5, one can easily locate the neutral
stress plane since it appears as a dark line (zero
birefringence) running parallel to the major surfaces. This

il ¸ " I I I I
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C. Stress-Induced Electrooptic Effects

One of the most innovative techniques for utilizing
stress-induced domain switching m a device is shown in Fig.
4. This permanently stored image in a polished wafer of
PLZT 7/65/35 was produced by mechanically bending the
wafer while simultaneously applying a bias voltage and

(B)

Fig, 5. A PLZT 9/65/35 Rainbow bar as obso-ved with (A) t_

unpolarized light md (B) under orossed polarizers. Note in (A)that light is

not transmitted in the re_ced (bottom) part of thebarand in (B)thatthe

neutral plane separating compressive and tensile stresses is uniform throughout
the wafar diameter.

Tension

Compression

Fig. 4. An example of a stored image with gay-scale capability. The figure

shows an image stored in the Fetpic and projoaed onto the focal plane of a
Polaroid camera.

exposing an image with polarized light onto a wafer which
possessed a photoconductive film sandwiched between the
PLZT and a transparent ITO conductive electrode. Referred
to as a sWain-biased ferroelectric picture (Ferpic) device by
Maldonado and Meitzler [16], this optically birefringent
image achieves optical contrast because of the varying
domain reoriented positions within the material. Erasure of
the image is brought about by simply flooding the device
with light as saturation voltage is applied. This reorients all

neutral stress plane can be observed to move upward and out
of view as voltage is applied to the Rainbow and returns to
its original position when the voltage is removed. In reality,
the are,as appearing white and gray in the above photographs
are actually bi_fringent retardation colors ranging from
yellow to red, blue and green as depicted in Fig. 6. A series
of color bands are present rather than one uniform color
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because the stress (and accompanying strain) is non-uniform,
and a stress gradient always exists in a Rainbow. An

explanation of what is believed to be occumng in a Rainbow
before and during operation is shown in Fig. 6. The top row
of Rainbow cross-sections describes the optical behavior, and
the bottom row the polarization/domain behavior. The

alignment of the domains are a direct result of the Rainbow
stresses. Tension toward the top surface aligns the domains

(polar axes) parallel to the surface, and compression toward
the bottom reduced surface align the domains perpendicular
to the surface. When a voltage is applied during operation,

the compressively-stressed, perpendicular domains are
favored to grow at the expense of the tensionally-stressed,
parallel domains, thus leaving the Rainbow in varying
degrees of compressive stress which is less than that
originally present in the virgin Rainbow. Upon removing
the voltage, the original pre-stressed state is restore6

defects such as exist in the PLZTs (Po+2 and Zr/Ti+4

vacancies), creep at room temperature and also at higher
temperatures are issues that need to be addressed. Room
temperature creep has not, as yet, received any attention,
and high temperature creep has only been dealt with as a
means by which it could be used to modify ceramic shapes
for conformal piezoelectric patches. Some examples of
creep-molded parts which were heat treated at 1100°C for 1
hour are given in Fig. 7. The parts shown in the figure

Fig. 7. Examples of PLZT 1/53/47 attd 9/65/35 creep -molded oeramics.

D. Stress-Induced Mechanical Properties

It is well known that the pre-stressing of a material can

often significantly enhance its mechanical properties and its
behavior under service conditions. Notable examples of this

effect include the tempering of glass, reinforced concrete,
fracture toughening in partially stabilized zirconia (PSZ) and
increased chemical durability in compressively stressed

glazes on ceramic bodies.
A similar effect has also been observed to occur in pre-

messed ferroelectrics as exemplified by the Rainbow
actuators. In these bender-type actuators, it is highly
desirable to achieve maximum flexibility in the structure
(hence, thinner structure) while still maintaining the highest

possible mechanical strength for optimum load-bearing or
force-generating properties. Typical values of three-peint
bending strength and modulus of elasticity for PLZr
9.5/65/35 are given in Table I where normal and Rainbow
ceramics are compared. To be noted here is a 55% increase
in modulus of rupture accompamed by a 48% decrease in
modulus of elasticity. Both of these effects are very desirable
for achieving the highest displacements in bending actuators.

TABLE I

MECHANICAL PROPERTIES OF PLZT RArm3ow CERAMICS

Composition Reduction Modulus of Modulus of

Conditions Rupture, MPa Elasticity, MPa

9.5/65/35 as Hot Pressed 87 10.8 x 10 *

9.5/65/35 975°C/60 rain. 135 5.6

E. Stress-Induced Creep

In super soft, high lead-containing ceramics with point

possess radii of curvature ranging from 1.25 cm to 12 cm
with a thickness of approximately 1 mm.

ACKNOWLEDGMENT

This work was supported by.NASA and ONR.
REFERENCES

[ 1 ] M.E. Lines mad A.M. Glass, Pnnc_ples and ApplwaOons of
Ferroelectncs and Related Matermls, Oxfrod: Ciaren&m, 1977.

[2] W.G. Cady, Piezoelectnc_ty, New York: McGraw-HilL 1946.

[3] H.H. Krueger and D. Berlmcourt, "Effects of high static mess on the

piezoelectric properties of transducer mm_als," J. Aomm. SOe. of Am.,

vol. 33, pp. 1339-1344, 1961.

[4] H.H. Krueger, "Stress _itiv_ty of piezoelectric ceramics: Part 1.

s_tsitivity to oompressive gress parallel to the polar axis," J. Acou_ Soc.

ofAnL, vol. 42, pp. 636-645, 1967.

[5] H.H. K,rueger, "Stress sensitivity of piezoelectric ceramics: Pat_ 3.

sensitivity to compressive stress lmrpendicul_r to the polar axis," J.

Aceu_ So,:. of Am., vol. 43, pp. 583-591, 1968.

[61 V.A lsupov, "Some aspects of the physics ofpiezodearic c_-amics,"
Ferrodeotri_, vol. 46, pp. 217-225, 1983.

[7] H. AmdL G. Sdamidt md N. Vogel, "Influence ofuniaxial pressure on
the properties of PLZT ceramics," Ferroelectrics, vol. 6 I, pp. 9-18, 1984.

[8] S.W. Meeks and R.W. Tinm_ "Effects of one-dimensional stress on

piezoelectric ceramics," J. Appl. Phys., vol. 46, pp. 4334-4338, 1975.

[9] S. Stotz, "Shift of the morphotropie phase boundary in the PZT system
under the inflluenee of electric fields and tmiaxial stresses," Ferroeleetrics,

vol. 76, pp. 123-132, 1987.

[10] D. Berlinenurt, "l_es ofsolid solmiotas of lead titanato - lead

_x_nate, Clevite Tedmical Report No. 2, pp. 23-27, May 21, 1956.

I111 D. Beslincourt, H.H. Kmel_ and B. Jaffe, "Stability ofphas_ in

lead zironnato with vmiation in pressure, de_ric field, _ and

enmposition, J. Phys. Chem. Solids, vol. 25, pp 659-674, 1964.

[12] P.C. Lyme and C.M. Percival "Analysis oflaock-wave-actuated

ferroeleOa'ic power supplies," Ferroelectrics, vol 10., pp. 129-133, 1976.

[13] G. Schmidt and I. Boczek, "Pseudoetasticity and shape memory of PLZT

oeramic, Phy. St.aL Sol. (a), vol. 50, K109-111,197g.

[141 T. Kimura, R.E. Nm_nham and L.E. Cross, "tx_hape-memory effect in
PLZT c_mic,," Phase Transitions, vol. 2, pp. ! 13-130, 1981.

[15] V.K. Wadhawan, M,C. Kemion, T. Kimura and ILE. Newnham, The

shapemaemoty effect in PLZT ceramics," Ferroelearics, vol. 37, pp. 575-

578, 1981.

[16] J.R. Maldonado and A.H. Meitzl_, "Strain-biased ferroeteaxie-

photo_xmduotot inmge storage and display devices." Proc. IEEE, vol. 59,

pp. 368-382, 1971.



FerroelectricJ. 1996, Vol. 182, pp. 69-76 O 1996 OPA (Overseas Publishers Association)

Reprints available directly from the publisher Amsterdam B.V. Published in The Netherhmds
Photocopying permitted by license only under license by Gordon and Bre_'h ,Science

Publishe_ SA
PrintedinMalaysia

COMPOSITION AND MICROSTRUCTURE OF
CHEMICALLY REDUCED PLZT CERAMICS

G. LI, E. FURMAN and G. H. HAERTLING

Department of Ceramic Engineering, Clernson University,
Clemson, South Carolina 29634-0907, USA

(Received September 15. 1995)

Hot-pressed PL.ZT ceramic wafers were chemically reduced by a special processing technique on one
of the major surfaces to form oxide-reduced layer composite structures. Devices based on such structures

have promising characteristics for actuator use. The composition and microstructure of the reduced layer
from several PLZT ceramics of different compositions as well as the oxide-reduced layer interface were

examined and analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM).

A variety of the oxide phases, such as PbO. ZrO 2. Zr'['iO. and LaTiO). were revealed in the reduced

PLZT samples by XRD in addition to the anticipated metallic lead phase. SEM micrographs showed
that the reduced PLZT ceramics were composed of various fine-grained particles, and the metallic lead

formed a continuous phase It was found that the oxide-reduced layer interface region was composed of

a mixture of unreduced and reduced phases. The thickness of the mixed phase region was primarily

associated with the grain size of the original unreduced PLZT ceramics.

Keywords: Ferroelectric ceramic, chemical reduction, microstructure, actuator.

1. INTRODUCTION

A new type of ultra-high-displacement, multi-function actuator, named RAINBOW

(Reduced And INternally Biased Oxide Wafer), has recently been developed by using

a special processing method. This technique involves chemical reduction of one of

the major surfaces of a high lead-containing ferroelectric ceramic wafer by heat

treating the wafer on a flat carbon block at an elevated temperature, thus producing
a dome-shaped, oxide-reduced layer composite structure. When an electric field is

applied across such a composite wafer, large axial displacement is generated. De-

tailed descriptions of Rainbow ceramics and their potential applications can be found
in References 1 and 2. Since the electromechanical properties of a Rainbow actuator

are dependent upon the physical properties such as thermal expansion, elasticity, and

electrical conductivity of its reduced layer, a thorough investigation of the micro-

structure of reduced PLZT ceramics is significant for the characterization and appli-
cation of Rainbow actuators. The PLZT ceramics were chosen for this work because

they are easily reduced and have excellent electromechanical characteristics.

The phase components and microstructure of the reduced layer as well as the
configuration of the oxide-reduced layer interface for several PLZT Rainbow samples

have been investigated by means of X-ray diffraction technique and scanning electron

microscopy.

2. SAMPLE PREPARATION AND EXPERIMENTAL PROCEDURES

The Rainbow samples used were prepared from PLZT ceramics 1.0/53/47, 5.5/57/43
and 9.5165135, where the numbers denote the atom ratios La/Zr/Ti of the PLZT
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compositions. Conventional processing techniques combined with hot-pressing were

employed to produce highly dense PLZT slugs. The ceramic wafers obtained from

the PLZT slugs were chemically reduced by placing them on a graphite block and

heat treating them under the conditions of 975"C160 min (reduction tempera-
tureltime).

Fractured, polished, and etched surfaces of the samples were used in both XRD

and SEM analyses. For X-ray diffraction, the reduced side of the Rainbow samples

were lapped off approximately 50 l.tm and slightly polished to expose the internal

structures. This procedure was employed because a thin reoxidized layer is often

formed on reduced surfaces during processing. X-ray diffraction was first performed

on the polished surfaces. Then, the same surfaces were etched with an HCI/HF

solution for further study. X-ray diffraction patterns of fractured surfaces were

obtained from the powders prepared by crushing the completely reduced PLZT
wafers.

Cross-sectional surfaces of the Rainbow samples were usually used for the SEM

analysis in this study. The fractured surfaces were obtained by breaking the Rainbow
along their diameters. The surfaces were also polished by using progressively finer

diamond pastes with a finish of 0.25 }.tm. The polished surfaces were then etched,

cleaned, and coated with a carbon or gold film before examination. In some cases,

the polished surfaces were directly examined under SEM.

All of the X-ray diffraction experiments were performed on an X-ray diffrac-

tometer (Scintag XDS 2000 TM) with Cu Ket radiation at a scan rate of 2 degrees per
minute. A JOEL scanning electron microscope operating at an accelerating voltage

of 15 keV was used for the SEM analyses.

3. EXPERIMENTAL RESULTS

3. I X-Ray Diffraction Analysis

Figures l(a)-l(c) show the X-ray diffraction patterns from the polished surface of

the reduced layer of Rainbow samples 1.0/53/47, 5.5/57/43 and 9.5165135, respec-

tively. The Rainbow samples in this work are indicated by their original PLZT com-

position; for example, Rainbow 10/53/47 represents a sample produced from PLZT

1.0/53/47 wafer. It was found that in all cases the strongest peaks in the diffraction

patterns were produced by the metallic lead phase. The remaining weaker peaks

were caused by a number of oxide phases formed during the reduction process. The

number and composition of the phases observed in the reduced PLZT ceramics were

dependent on the unreduced PLZT compositions. As is indicated in the figures, the

oxide phases identified include PbO (litharge), ZtO2, ZrTiO4, TiO2, LaTiO_ and

Lao._TiO2.99j (JCPDS 26-827).

The X-ray diffraction pattern of the etched reduced surface of Rainbow 5.5157143

is given in Figure 2. It can readily be seen by comparing Figure 2 with Figure l(b)

that, upon etching, almost all of the Pb peaks were greatly depressed while those of

the oxide phases underwent little change. This result suggests that it is primarily the

Pb phase that was etched away from the surface.

It should be noted that the intense diffraction peaks of the Pb phase shown in

Figures l(a)-l(c) may partly result from the grinding and polishing treatments on
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FIGURE 3
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X-ray diffraction paRem of the powder obtained from reduced PLZT 1.0/53147 sample.
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FIGURE 4 SEM micrographof fracturedcross-sectionalsurfaceof Rainbow 1.0/53147neat the PLZT-
reducedlayer interface.

the sample surfaces prior to analysis. Since the metal Pb is a very soft material

relative to the oxide phases, when a reduced sample is ground or polished, the Pb

phase is deformed and smeared over the surface. Consequently, the relative amount

of Pb phase on the surface is increased, thereby enhancing the intensity of the Pb

diffraction peaks.

For this reason, the X-ray diffraction of fractured surfaces better reflects the actual

states of the various phases in a sample. Since it is difficult, in practice, to obtain a

large fracture surface of the reduced layer, the powders from completely reduced
wafers which contain various small fracture surfaces were used instead. The diffrac-

tion pattern of such powder for Rainbow 1.0/53/47 is shown in Figure 3. As can be

seen, the intensity ratios of the major metallic lead peaks to the oxide phase peaks

are considerably reduced compared to those of the polished surface shown in Figure

l(a), indicating the presence of smearing in the polished samples. It is, however,

worth noting that the Pb diffraction peaks from the powder remain the strongest,
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FIGURE 5
9.5165/"35.

SEM micrograph of the reduced layer of Rainbows (a) 1.0/53147, (b) 5.5157/43 and (c)

and this is also true for the other PLZT Rainbow samples studied. Figure 3 also
shows the existence of PbO (massicot) phase which was not observed in Figures
l(a)-l(c).

3.2 SEAt Analysis

Figure 4 shows the SEM micrograph of the fractured cross-sectional surface of Rain-
bow 1.0/53/47. The upper portion of the micrograph shows the PLZT layer, and the
lower portion is the reduced layer. These layers are separated by a PLZT-reduced
layer interface where both the unreduced and reduced phases were found. A micro-
graph of higher magnification on the reduced region, which is given in Figure 5(a),
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N

N

FIGURE 6 Backscattered electron image of Rainbow 1.0/53/47 near the PLZT-reduced layer interface.

indicates that the region was composed of various fine-grained particles. A similar
microstructure was also observed in Rainbows 5.5/57/43 and 9.5165135, as is shown

in Figures 5Co) and 5(c) respectively. The small uniformly distributed particles, about

0.2 I_m in diameter, as can be seen in the figures, were identified to be the Pb grains

by means of X-ray diffraction coupled with an extraction technique. The micro-
structure of the reduced layer seems relatively insensitive to the microstructure of

the original PLZT composition.
The secondary electron image of a polished surface of the reduced layer is usually

featureless. It was, however, found that some characteristics of the polished surfaces

can be revealed via a backscattered electron imaging technique. Figure 6 is a back-

scattered electron image of Rainbow 1.0/53/47 near the PLZT-reduced layer inter-

face. Again the lower portion is the reduced layer. The darkest areas seen in Figure
6 are most likely the thoroughly reduced regions. This is because the reduction

process leads to a relatively loose structure by decomposing the original dense PLZT

phase with an accompanying oxygen loss, thereby contributing less to the backscat-
tered electron signals. From the morphology of the oxide-reduced layer interface it
can be deduced that the reduction reaction was initiated along the PLZT grain bound-

aries and then proceeded toward the center of the grains.

The SEM image of the etched reduced surface of Rainbow 5.5/57/43, whose X-

ray diffraction pattern has been given in Figure 2, is displayed in Figure 7. The

grains exposed by etching, which can be seen in Figure 7, are considered to be the

oxide phases identified in the corresponding X-ray diffraction pattern. The fact that

the oxide grains appears isolated indicates that the Pb grains, which were mostly

etched away from the surfaces, form a continuous phase. The continuity of the lead

phase is further supported by high electrical conductivity of the reduced layers.

4. DISCUSSION

The results of the aforementioned X-ray diffraction analyses indicate that a number

of different phases are produced as a result of the chemical reduction of a PLZT

ceramic in forming the Rainbow structure. The phases found include the metallic

lead phase and seven oxide phases: PbO (litharge), PbO (massicot), ZrO2, ZrTiO4,
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FIGURE 7 SEM micrograph of etched reduced layer of Rainbow 5.5/57/43.

TiO2, LaTiOj and Lao.seTiOz.,oj. The original PLZT phase was not observed in the

reduced samples. It is noted that while the exact number and composition of the

phases in a particular reduced PLZT sample depend on the original PLZT compo-

sition, the phases of Pb, PbO (litharge), ZrO2 and ZrTiO, are common among the
samples studied.

Many investigations of chemical reduction of ferroelectric materials were con-

cerned with the influence of reduction atmosphere on the electrical and optical prop-

erties of the materials? -7 In these studies, defects, generally vacancies, were intro-

duced into the crystal lattice during chemical reduction, but the framework of the

crystal structure underwent no substantial changes. Current work dealt with intense

chemical reduction of high-lead containing ferroelectric ceramics in which the orig-

inal crystal structure was completely destroyed. In his investigation of PLZT ceram-
ics reduced by graphite blocks," Haertling showed that the reduction reaction is

accomplished via the interaction between carbon monoxide and loosely held oxygen

atoms in the PLZT perovskite lattice. It is therefore considered that, except for the
oxygen and slight Pb losses during reduction, the reduced layer should contain the

same amount of chemical elements as the unreduced PLZT ceramic. In other words,

the chemical reduction simply decomposes the PLZT crystal structure by attacking

the lattice oxygen ions and. at the same time, produces new phases by rearranging
the constituent elements.

Based on this consideration, the volume fraction of the lead phase in a reduced

PLZT sample may not be as large as it seems in the X-ray diffraction as, for example,
shown in Figure 3. This is reasonable since along with the volume fraction of each

phase many other factors may contribute to the relative peak intensities of the X-ray
diffraction pattern in a multiphase material. In fact, for the conceivable uses of

Rainbow actuators, it is not critical whether the Pb phase is dominant or not. The

main concern is that the Pb phase must be a continuous phase so that the reduced

layer has good conductivity. The fact that the metallic lead in the reduced layer

occurs with very fine particles, as was shown in the SEM micrographs, suggests that

even a small volume fraction of lead phase can render the reduced layer electrically

conductive. This may explain why the reduced PLZT ceramic exhibits excellent
conductivity.

There is a region along the PLZT-reduced layer interface where both PLZT and



76 G. LI. E. FURMAN and G. H. HAERTLING

reduced phases exist. The dimension (normal to the interface) of the region is defined

as the thickness of the interface in a Rainbow. It was found that the interface thick-

ness was related to the grain size of the phase before reduction. This is easily un-

derstood considering that the reduction process is initialized along grain boundaries

as illustrated in Figure 6. For Rainbow 1.0/53/47, whose PLZT layer displays a larger

grain size, the thickness was found to be approximately 20 p.m. Rainbows 5.5/57/43

and 9.5/65/35 have an interface thickness of about 2 p.m and 5 p.m, respectively.

The configuration of the PLZT-reduced layer interface is probably important for some

specific properties of Rainbow actuators such as fatigue and loading capability and

will be investigated fut_er.

5. SUMMARY

A number of different crystalline phases have ben found in the PLZT ceramics

reduced via the RAINBOW process. The phases found include metallic lead and

seven oxide phases: PbO (litharge), PbO (massicot), ZrO2, ZrTiO4, TiO2, LaTiO_ and

Lao66TiO_.9_j. The original PLZT phase was not observed. While the exact number

and composition of the phases for a particular reduced sample are dependent on the

PLZT composition, the phases of Pb, PbO (litharge), 7_.tO, and ZrTiO4 are commonly

observed, with the Pb phase producing the strongest X-ray diffraction.

The reduced PLZT ceramics are composed of various fine-grained particles, and

the smallest grains, about 0.2 p.m, correspond to the lead phase. This microstructural

characteristic is relatively insensitive to the PLZT composition. It is shown that the

metallic Pb grains constitute a continuous phase in the reduced PLZT ceramics,

which is consistent with the good electrical conductivity of these materials.

Near the interface between the PL.ZT and reduced phases of a Rainbow, the two

phases coexist. The thickness of the interface was found to be associated with the

grain size of the PLZT phase. The values of the interface thickness for Rainbows

1.0/57/43, 9.5/65/35 and 5.5/57/43 are approximately 20, 4, and 2 p.m, respectively.
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